船舶排放污染物智能监测系统研究
[Abstract]:The pollution of marine environment caused by the discharge of oil-bearing sewage and sulfide from the waste gas of ships has attracted extensive attention of the international community. Effective monitoring of pollutants discharged from ships plays an important role in the protection of marine environment. Nonlinear deviation affects the detection accuracy. However, there is not a complete set of mature system on the market for on-line monitoring of sulfide and other pollutants in ship exhaust gas. In order to meet the needs of practical application, this paper studies and designs an intelligent monitoring system for marine pollutants. The system mainly includes three parts: the principle prototype of marine oil concentration meter, the principle prototype of sulfur dioxide concentration detection in ship exhaust gas and the monitoring software of upper computer. The main research work of this paper is as follows: (1) The development of marine oil concentration meter prototype. (1) The hardware design of marine oil concentration meter prototype. It mainly includes the design of sensor photoelectric structure, hardware circuit and signal acquisition and processing module. (2) Research on the detection model of marine oil concentration based on Least Squares Support Vector Machine (LS-SVM). For the non-linear deviation caused by bubbles and other interference factors in the traditional detection of marine oil concentration based on turbidity method, which exceeds the detection range of a certain concentration, non-linear compensation is needed. LS-SVM has good application in solving small sample statistics and nonlinear modeling. The experimental results show that it can be used in the development of marine oil concentration meter prototype. (3) Particle Swarm Optimization (PSO) algorithm for LS-SVM-based marine oil content. Concentration detection model parameters optimization research. Aiming at the blindness of parameter selection of marine oil concentration detection model based on LS-SVM, which affects the prediction accuracy of the model, PSO algorithm is used to optimize the parameters of LS-SVM oil concentration detection model. The PSO-LS-SVM oil concentration detection model optimized by particle swarm optimization algorithm has higher accuracy and avoids the problem of model generalization performance degrading due to improper model parameters selection. 2. Research on the denoising algorithm of sulfur dioxide concentration detection signal based on wavelet analysis. Aiming at the fact that the absorption of sulfur dioxide to infrared light is very weak, the detection signal is easily submerged in noise. After amplification and filtering, the signal is still unavoidable from noise caused by amplifier, external environment, radiation source and so on. The wavelet threshold denoising method is used to denoise the noisy signal by using the time domain and frequency domain locality of the wavelet denoising algorithm and the advantages of detecting singularity and abrupt structure of the signal. 3. The upper computer monitoring software of the ship emission intelligent monitoring system based on Lab VIEW software platform is designed.
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP274
【参考文献】
相关期刊论文 前10条
1 王静蕾;喻林;;智能船舶的系统设计与研究[J];舰船科学技术;2016年08期
2 李光正;宋新刚;徐瑜;;基于“工业4.0”的智能船舶系统探讨[J];船舶工程;2015年11期
3 梅魏鹏;余淼;师翔;王英;浮洁;张永彩;;小波降噪技术在差分吸收光谱浓度检测中的应用[J];影像科学与光化学;2014年02期
4 周秀军;戴连奎;;基于最小二乘支持向量机的橄榄油掺杂拉曼快速鉴别方法[J];光散射学报;2013年02期
5 庄媛;赵晓祥;周美华;;水体中油污染状况及微量油测定方法的比较[J];环境科学与技术;2012年06期
6 李兆华;张劲;陈红兵;张玲玲;康群;封瑛;;中国农村水污染状态与危害(英文)[J];Agricultural Science & Technology;2012年05期
7 徐丽莎;钱晓山;;基于变异CPSO算法的LSSVM出水COD的软测量研究[J];环境工程学报;2012年05期
8 谢宜炜;孙永明;王亮;刘占国;马玉麟;王帅军;;船舶柴油机尾气检测系统设计研究[J];船海工程;2012年01期
9 龙文;焦建军;龙祖强;;基于PSO优化LSSVM的未知模型混沌系统控制[J];物理学报;2011年11期
10 尹秀丽;薛钦昭;秦伟;;生物传感技术在海洋监测中的应用[J];海洋科学;2011年08期
相关博士学位论文 前4条
1 汤斌;紫外—可见光谱水质检测多参数测量系统的关键技术研究[D];重庆大学;2014年
2 张弛;烟气连续监测系统关键技术的研究[D];天津大学;2012年
3 史云;环境水体石油类污染现场检测技术研究[D];河北农业大学;2009年
4 王清华;光散射法颗粒大小与形状分析[D];南京工业大学;2003年
相关硕士学位论文 前10条
1 杨明亮;三气体红外光学传感器关键技术研究[D];中北大学;2015年
2 赵敬晓;紫外—可见光谱法水质COD检测技术研究[D];重庆大学;2015年
3 王海玲;基于DOAS和支持向量回归的SO_2浓度检测方法研究[D];重庆大学;2015年
4 纪莹蕾;智能浊度传感器的研究与设计[D];中国科学技术大学;2014年
5 杨鑫蕊;改进的小波阈值去噪算法研究[D];哈尔滨理工大学;2014年
6 于海波;水中微量油污染在线检测技术与实验研究[D];天津大学;2014年
7 张克锐;新型智能船用油份浓度计的研制[D];集美大学;2013年
8 邹瑞杰;基于Mie散射的微量油污染在线检测技术研究[D];天津大学;2012年
9 王相如;非分散红外烟气二氧化硫浓度检测系统的设计与实现[D];中北大学;2011年
10 周飞云;船舶排油监控系统设计与实现[D];大连海事大学;2011年
,本文编号:2218712
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2218712.html