基于遥感技术的湖泊历史变迁检测及展示
[Abstract]:In this paper, the sand lake image data are extracted by preprocessing the remote sensing image data of Wuhan in different periods, and the image data are classified and processed by using the method of multi-scale segmentation and decision tree classification. The use of mobile terminals such as smart phones to show the historical changes of lakes provides a fast, accurate and convenient way for lake law enforcement personnel to detect illegal occupation of lakes and fill lakes, and further improve the efficiency of law enforcement personnel. At the same time, it also provides a reference for evidence collection of illegal lake filling. The change detection method used in this paper is the image classification and comparison method. The research is mainly divided into two aspects: remote sensing image preprocessing and object oriented image classification; The main research contents and innovations include the following aspects: 1, the research of remote sensing image preprocessing technology. In this paper, the image data of Shahu Lake in Wuhan City is obtained through geometric correction, image mosaic and image tailoring of aerial image obtained by Hubei Geographic Information Center. After resampling, the image data have the same resolution (1m). 2, the optimal segmentation scale in the multi-scale segmentation method. When using multi-scale segmentation method to classify the object oriented remote sensing images, the selection of scale parameters has a great influence on the classification results, and the size and number of objects are different when different segmentation scales are used to segment the images. The smaller the scale is, the more objects will be generated, which will lead to over-segmentation. Conversely, the larger the scale is, the fewer objects will be generated, which will lead to insufficient segmentation. Because there are differences in spectral, texture and structure characteristics among different types of objects, there are different optimal segmentation scales for different types of objects. Based on the principle of high internal homogeneity and high external heterogeneity, the segmentation quality function is established in this paper. By comparing the value of segmentation quality function under different scale parameters, we can judge the optimal segmentation scale. 3. The research and improvement of the classification method based on multi-scale segmentation and decision tree are presented. In this paper, multi-scale segmentation and CART decision tree classification methods are deeply studied and analyzed. The concept of image segmentation is introduced in the traditional multi-scale segmentation method, and two methods are proposed: one is based on image "splicing lines" and the other is based on large-scale multi-scale segmentation. Multi-scale segmentation and decision tree classification for subblocks are carried out. Taking the 81 year sand lake image data as the experimental object, the accuracy of these two improved classification methods is compared with the results of traditional multi-scale segmentation and decision tree classification. The results show that the accuracy of multi-scale segmentation and decision tree classification based on block is obviously higher than that of multi-scale segmentation and decision tree classification of whole image. The method based on large scale multi-scale block has the highest precision of .4and the detection of lake transition area based on intelligent mobile terminal. This paper briefly introduces the Wuhan Water Culture App system, and realizes the detection of the transition region of the classified image map in the system transition function module.
【学位授予单位】:华中师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 鲁恒;付萧;李龙国;刘超;白茹月;李乃稳;;最优分割尺度支持下高分遥感影像水土资源信息分类[J];农业机械学报;2016年09期
2 杜珂磊;唐斌;李佳;;基于eCognition的玉树结古镇灾情动态监测研究[J];测绘与空间地理信息;2016年02期
3 杨柯;段功豪;牛瑞卿;黄思悦;曹亚;;基于多源遥感影像的武汉都市发展区湖泊变迁分析[J];长江科学院院报;2016年01期
4 张毅;陈成忠;吴桂平;范兴旺;潘鑫;刘元波;;遥感影像空间分辨率变化对湖泊水体提取精度的影响[J];湖泊科学;2015年02期
5 曹帮琴;徐昊;;Android应用中优化Bitmap使用避免内存溢出[J];河南工程学院学报(自然科学版);2014年02期
6 李雪松;陈宏;张苏利;;城市空间扩展与城市热环境的量化研究——以武汉市东南片区为例[J];城市规划学刊;2014年03期
7 马云飞;李宏;;遥感变化检测技术方法综述[J];测绘与空间地理信息;2014年01期
8 淡永利;王宏志;张欢;张晓峰;纵兆伟;;2000—2010年武汉市中心城区湖泊景观变化[J];生态学报;2014年05期
9 赵艳;;Android中bitmap引起内存溢出的解决方案的对比分析[J];科技传播;2013年24期
10 卢晓平;马进全;;ERDAS在航测调绘片纠正中的应用[J];测绘与空间地理信息;2012年02期
相关会议论文 前1条
1 陈刚;邓文胜;王丽亚;;遥感技术在城市湖泊演变研究中的应用[A];全国国土资源与环境遥感应用技术研讨会论文集[C];2009年
相关博士学位论文 前1条
1 陈寅;多时相遥感图像变化检测技术研究[D];华中科技大学;2014年
相关硕士学位论文 前6条
1 雍万铃;基于面向对象多尺度分割的目标信息提取研究[D];兰州交通大学;2016年
2 章琨;基于遥感影像的城市绿地提取技术研究[D];东华理工大学;2014年
3 杜斌;基于面向对象的高分辨率遥感影像水体信息提取优势研究[D];云南师范大学;2014年
4 詹福雷;基于面向对象的高分辨率遥感影像信息提取[D];吉林大学;2014年
5 颜宏娟;面向对象的遥感影像模糊分类方法研究[D];西安科技大学;2008年
6 陈鑫;基于决策树技术的遥感影像分类研究[D];南京林业大学;2006年
,本文编号:2224744
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2224744.html