基于时间序列的航天器遥测数据预测算法研究
[Abstract]:The important basis for scientific decision-making is correct prediction. In order to manage the orbiting spacecraft more efficiently, it is necessary to predict the state of spacecraft operation because the spacecraft operates in a complex space environment. The change trend of spacecraft telemetry parameters can effectively reflect its operation in space environment. The spacecraft telemetry parameters contain the detailed information of the equipment state. According to the variation rule of the data information, a suitable prediction model can be established for the change state of the telemetry parameters. The prediction algorithm based on time series has a bright future in the research field of spacecraft telemetry data. The change of historical parameters can influence the change trend of future parameters, which shows that the parameters are memorized. In this paper, the common prediction methods are briefly introduced, and the advantages of correlation prediction model in dealing with linear data and the shortcomings in dealing with nonlinear data are analyzed and summarized. In order to solve the problem of nonlinear data processing, an artificial neural network with nonlinear mapping function is introduced. At present, the development of BP network is the most mature. It has a powerful advantage in solving nonlinear data prediction. Efficient nonlinear mapping capability is its significant advantage. It has no obvious requirement for the prediction parameters. As long as the historical telemetry parameters are effectively studied, the future changes of the data can be predicted. However, the standard BP neural network prediction model itself also has some shortcomings. Aiming at these shortcomings of the algorithm, a corresponding optimization method is proposed. In practice, telemetry data sequences are often more complicated, and both nonlinear and linear relationships exist in specific time periods. Therefore, in this paper, the correlation of telemetry data based on time series is divided into nonlinear module and linear module. Because time series are decomposable, the linear principal part of telemetry data can be predicted by linear time series AR model. The next step will split the nonlinear sequence part, through the BP algorithm. The final output consists of the calculated nonlinear part and the linear part superposition. At the same time, because genetic algorithm (GA) is a global optimization algorithm, the GA algorithm is used to optimize the initial weight threshold of BP network in order to alleviate the problem that BP network is easy to fall into the minimum value. In this paper, the constructed prediction model is applied to an example of predicting the trend of a spacecraft telemetry data. After many simulation experiments, the results show that the AR-BP-GA synthetic prediction algorithm meets the requirements. And the simulation result is better than that using only one linear AR model. Finally, it is proved that the proposed comprehensive prediction algorithm is more practical and effective.
【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V557;TP18
【参考文献】
相关期刊论文 前10条
1 刘继业;陈西宏;薛伦生;刘强;;基于ARIMA与ANN组合模型的卫星钟差预报方法[J];大地测量与地球动力学;2013年04期
2 房红征;马好东;罗凯;韩立明;熊毅;;基于遥测数据的航天器长期性能预示方法研究[J];计算机测量与控制;2013年07期
3 张超群;郑建国;钱洁;;遗传算法编码方案比较[J];计算机应用研究;2011年03期
4 李波;赵洁;郭晋;;设备故障评估新指标及基于ARMA的预测系统[J];系统工程与电子技术;2011年01期
5 秦巍;郭永富;;一种基于历史遥测数据的在轨卫星故障预警系统[J];航天器工程;2010年06期
6 李文涛;姜海波;王雪琴;;自回归模型选择的多准则方法[J];统计与决策;2010年18期
7 郭小红;徐小辉;赵树强;杨继春;;基于新息灰预测的卫星遥测参数状态预测及应用[J];宇航学报;2010年08期
8 肇刚;李言俊;;基于时间序列数据挖掘的航天器故障诊断方法[J];飞行器测控学报;2010年03期
9 周俊杰;王德功;常硕;;浅析基于模型的航空电子装备故障预测[J];装备制造技术;2010年05期
10 黄建国;罗航;王厚军;龙兵;;运用GA-BP神经网络研究时间序列的预测[J];电子科技大学学报;2009年05期
相关博士学位论文 前2条
1 张浒;时间序列短期预测模型研究与应用[D];华中科技大学;2013年
2 杜奕;时间序列挖掘相关算法研究及应用[D];中国科学技术大学;2007年
相关硕士学位论文 前10条
1 谢浩;基于BP神经网络及其优化算法的汽车车速预测[D];重庆大学;2014年
2 孙建乐;基于时间序列相似性的股价趋势预测研究[D];重庆交通大学;2014年
3 王红;卫星锂离子电池剩余寿命预测方法及应用研究[D];哈尔滨工业大学;2013年
4 王瑞;基于遗传优化BP神经网络的污水处理水质预测研究[D];华南理工大学;2012年
5 陈敏;基于BP神经网络的混沌时间序列预测模型研究[D];中南大学;2007年
6 罗凤曼;时间序列预测模型及其算法研究[D];四川大学;2006年
7 姬春煦;基于神经网络集成的股票指数中期预测[D];西北工业大学;2005年
8 孟庆芳;混沌时间序列预测方法及其应用[D];山东大学;2005年
9 白斌飞;基于神经网络理论的线性时间序列预测研究[D];西南交通大学;2005年
10 陈卓;基于时间序列的设备缺陷预测的研究[D];辽宁工程技术大学;2005年
,本文编号:2228688
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2228688.html