当前位置:主页 > 科技论文 > 自动化论文 >

基于氧化石墨烯的光纤气体传感器研究

发布时间:2018-09-12 08:31
【摘要】:作为新型传感检测技术,光纤传感技术已经成为传感器研究领域的关键技术之一。微纳光纤的倏逝波传输特性使其在传感探测时体现出高灵敏度、极短响应时间等特点,因此在光学传感器应用方面有着广阔的应用前景。与此同时,石墨烯及其衍生物氧化石墨烯(graphene oxide,GO)也已经成为生物和化学等传感研究领域关注的新型敏感材料。本论文围绕氧化石墨烯的光纤气体传感器的研究,主要工作内容如下:提出将氧化石墨烯薄膜涂覆在微纳光纤表面,形成混合波导结构。详细探讨了在该复合波导结构中传输光信号的模场分布情况以及深入研究了这种氧化石墨烯-微纳光纤混合波导结构的传输特性,并将该复合波导结构应用于气体传感领域。本文首先详细介绍了石墨烯和微纳光纤的特性、传输原理以及制备方法,并探讨了氧化石墨烯和微纳光纤的结合方式以及具体步骤。然后,分析了这种混合波导结构的传感特性,针对氧化石墨烯在该混合波导中的作用进行了探讨,并利用仿真软件仿真了该混合波导的模场分布。最后将这种复合波导结构应用于光纤传感实验当中,分别对氧化石墨烯-微纳光纤混合波导进行了温度传感特性实验以及气体传感特性实验,结合实验结果证明氧化石墨烯-微纳光纤复合波导传感器结构的有效性以及在传感应用中的优势。本文还提出一种基于氧化石墨烯涂覆微光纤环形谐振器(graphene oxide coated microfiber knot resonator,GMKR)的光纤气体传感器。其工作原理是当气体分子吸附到GO的表面时,改变GO的折射率,然后可以通过测量GMKR的干涉条纹漂移来检测气体浓度变化引起的折射率变化。由于气体分子和GO之间的吸附能力和电荷转移能力不同,实验结果显示该传感结构对NH_3和CO的检测灵敏度分别为~0.34pm/ppm和~0.16pm/ppm。同时,实验结果表明,GO是一种非常理想的气敏传感材料,并且其制备工艺简单,转移成功率高,一致性好,因此可以很好地与各种光纤传感结构相结合,形成一类新型的光纤气体传感器。
[Abstract]:As a new sensor detection technology, optical fiber sensing technology has become one of the key technologies in the field of sensor research. The evanescent wave propagation characteristics of micro-nano fiber make it have the characteristics of high sensitivity and very short response time in sensing detection, so it has a broad application prospect in optical sensor applications. At the same time, graphene oxide (graphene oxide,GO) and its derivatives have become a new sensitive material in biosensor research fields such as biology and chemistry. The main work of this thesis is as follows: a hybrid waveguide structure is proposed by coating graphene oxide film on the surface of micro-nano fiber. The mode field distribution of the optical signal transmitted in the composite waveguide structure is discussed in detail. The transmission characteristics of the hybrid waveguide structure with graphene oxide micro-nano fiber are studied in detail. The composite waveguide structure is applied to the field of gas sensing. In this paper, the characteristics, transmission principle and preparation method of graphene and micro-nano fiber are introduced in detail, and the combination mode and concrete steps of graphene oxide and micro-nano fiber are discussed. Then, the sensing characteristics of the hybrid waveguide structure are analyzed, and the role of graphene oxide in the hybrid waveguide is discussed, and the mode field distribution of the hybrid waveguide is simulated by simulation software. Finally, the composite waveguide structure is applied to fiber optic sensing experiments. The temperature sensing characteristics and gas sensing characteristics of graphene oxide / micro / nano fiber hybrid waveguides are studied. The experimental results show that the structure of graphene oxide / micro / nano fiber composite waveguide sensor is effective and has advantages in sensing applications. An optical fiber gas sensor based on graphene oxide coated microfiber ring resonator (graphene oxide coated microfiber knot resonator,GMKR) is also proposed. The principle is to change the refractive index of GO when the gas molecule is adsorbed on the surface, and then the refractive index change caused by the change of gas concentration can be detected by measuring the interference fringes drift of GMKR. Due to the difference of adsorption and charge transfer ability between gas molecules and GO, the experimental results show that the sensitivity of the sensing structure to NH_3 and CO is 0.34 ppm and 0.16 pm / ppm, respectively. At the same time, the experimental results show that go is a very ideal gas sensing material, and its preparation process is simple, the transfer success rate is high, and the consistency is good, so it can be well combined with various optical fiber sensing structures. A new type of optical fiber gas sensor is formed.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212

【参考文献】

相关硕士学位论文 前2条

1 程杨;石墨烯—微光纤混合波导偏振特性及其传感应用研究[D];电子科技大学;2014年

2 任卫红;平顶模式微纳光纤的模场及色散特性研究[D];湖南大学;2010年



本文编号:2238470

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2238470.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8131d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com