无线传感器网络基站位置优化算法研究
[Abstract]:Wireless sensor network (WSN) is a self-organized distributed network composed of a large number of wireless sensor nodes, which has been widely used in various fields. Its main feature is that the resource is strictly limited, especially the energy limitation, which directly affects the lifetime of the whole network. In order to make the network can work for a long time, energy-saving is particularly important. In this paper, the methods of prolonging the lifetime of wireless sensor networks are studied from the point of view of base station location optimization. The main work is as follows: (1) introduce the development prospects of wireless sensor networks, the current research situation and the technologies related to the lifetime of wireless sensor networks. Including the definition of the lifetime of wireless sensor networks, coverage control, routing protocols, base station location optimization technology. (2) the use of optimization theory to model the system model of wireless sensor networks, This paper analyzes the method of optimizing the lifetime of wireless sensor networks, and aiming at the disadvantage of Greedy algorithm which can not balance the energy distribution of wireless sensor networks, by introducing the concept of potential value, puts forward an optimization algorithm of base station location based on energy perception in wireless sensor networks. Simulation results show that the new algorithm can balance the network energy distribution well and further prolong the lifetime of wireless sensor networks. (3) A base station mobility algorithm based on genetic algorithm is proposed. Firstly, the optimal base station location of wireless sensor networks is modeled with the concept of potential. Secondly, the standard genetic algorithm is used to solve this model, aiming at the problem of "precocity" of standard genetic algorithm. The hierarchical genetic algorithm is used to solve the mathematical model again. The result of the genetic algorithm is the optimal position of the base station in the next round of data collection. The simulation results show that the genetic algorithm can solve the mobile path of the base station quickly, and the survival time of the wireless sensor network can be further extended by using the base station mobility algorithm.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.5;TP212.9
【参考文献】
相关期刊论文 前9条
1 晁迎;覃锡忠;曹传玲;邓磊;刘汉兴;;加速遗传算法在移动通信基站规划中的应用[J];新疆大学学报(自然科学版);2016年01期
2 张美平;谷雨;许力;;无线传感器网络单基站调度算法[J];计算机应用;2014年07期
3 陈友荣;俞立;董齐芬;洪榛;;基于蚁群的无线传感网最大化生存时间路由[J];计算机应用;2011年11期
4 陈卫;杨忠;夏玉亮;樊琼剑;;MEMS加速度传感器在微型特种机器人中的应用[J];传感器与微系统;2009年07期
5 刘海迪;杨裔;马生峰;李廉;;基于分层遗传算法的网格任务调度策略[J];计算机研究与发展;2008年S1期
6 王睿;梁彦;潘泉;;无线传感器网络的蚁群自组织算法[J];电子学报;2007年09期
7 沈波;张世永;钟亦平;;无线传感器网络分簇路由协议[J];软件学报;2006年07期
8 陈帅;钟先信;刘积学;石军锋;邵小良;;无线传感器网络的新进展与应用[J];压电与声光;2006年03期
9 任丰原,黄海宁,林闯;无线传感器网络[J];软件学报;2003年07期
相关博士学位论文 前3条
1 黄智;无线传感器网络基站移动算法研究[D];西安电子科技大学;2013年
2 廖鹰;无线传感器网络自组织技术研究[D];华中科技大学;2011年
3 潘晏涛;无线传感器网络生存时间优化问题研究[D];国防科学技术大学;2006年
相关硕士学位论文 前10条
1 王严严;压缩感知支持下的无线传感器网络生存时间延长技术[D];浙江工业大学;2015年
2 夏平;智能家居与可穿戴设备的融合技术[D];湖南师范大学;2015年
3 李喜乐;面向节能的多级无线传感网拓扑控制算法研究[D];浙江理工大学;2015年
4 刘树荣;基于分层遗传算法的测试数据自动生成方法研究[D];北京理工大学;2015年
5 杨鹏;基于无线传感器网络的智能家电系统设计[D];湘潭大学;2014年
6 高磊磊;一种能量有效的无线传感网路由算法研究与实现[D];南京理工大学;2014年
7 苑靖;无线传感网络在实时监测救援系统中的应用[D];南京大学;2012年
8 史明岳;能量有效的无线传感器网络覆盖优化研究[D];江苏科技大学;2012年
9 牟威;分层遗传算法在图像模板匹配中的应用[D];北京邮电大学;2011年
10 傅铮;无线传感器网络节点模块的设计与实现[D];华中科技大学;2008年
,本文编号:2240553
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2240553.html