深度学习在数据压缩中的应用研究
[Abstract]:With the advent of the information age, how data can be transmitted quickly and stored efficiently has become a hot topic, and data compression technology is just an effective way to solve this problem. Data compression technology has been paid more and more attention to for two reasons: first, the capacity of data storage devices is limited, in order to be able to store more data in a limited space, it is necessary to compress the original data. second, the rapid development of information technology on data. In order to achieve faster transmission speed and higher processing efficiency, the smaller the amount of data, the better. With the advent of the era of large data, data storage and transmission are facing. Because of the explosive growth of data volume and the complexity of data structure, traditional data compression algorithms are facing severe challenges. Under this background, this paper proposes a model which combines depth learning technology with clustering algorithm for data compression. The model not only obtains high compression ratio but also saves a lot of important information, so that the decompressed data can better represent the original data, which is very suitable for lossy compression of complex structure data. In the research of applying depth learning technology to data compression of smart meters, lossless coding technology is used to further compress the data after lossy compression. Finally, the performance of the model is verified by cross-validation technology. The experimental results show that the hybrid model is reliable and stable.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP181
【参考文献】
相关期刊论文 前10条
1 邓俊锋;张晓龙;;基于自动编码器组合的深度学习优化方法[J];计算机应用;2016年03期
2 Zhenlong Yuan;Yongqiang Lu;Yibo Xue;;Droid Detector:Android Malware Characterization and Detection Using Deep Learning[J];Tsinghua Science and Technology;2016年01期
3 苗海艳;郭丽芳;;广义回归神经网络在全国高技能人才需求中的应用研究[J];科技管理研究;2015年16期
4 杜辰飞;曲建岭;孙文柱;高峰;;基于稀疏自动编码器的飞参数据异常检测[J];计测技术;2015年02期
5 陆萍;陈志峰;施连敏;;RBM学习方法对比[J];计算机时代;2014年11期
6 刘羽;曾杰辉;刘晓阳;;一种船舶雷达导航回波数据压缩算法的设计[J];计算机测量与控制;2014年08期
7 刘建伟;刘媛;罗雄麟;;深度学习研究进展[J];计算机应用研究;2014年07期
8 孙健;任国强;吴钦章;;基于自适应指数哥伦布编码的图像压缩算法[J];光学精密工程;2013年11期
9 王元卓;靳小龙;程学旗;;网络大数据:现状与展望[J];计算机学报;2013年06期
10 张凤元;兰丽;邹佳;公绪艳;杨东;;小波变换结合LZW压缩算法探究[J];北京化工大学学报(自然科学版);2013年02期
相关硕士学位论文 前2条
1 陈承;基于压缩感知的智能电表设计与实现[D];武汉理工大学;2013年
2 赵亚飞;基于视觉的手势识别技术研究[D];浙江大学;2011年
,本文编号:2243037
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2243037.html