基于点云的喷漆机器人对汽车保险杠识别和位姿估计
[Abstract]:With the appearance and improvement of depth camera, it becomes more and more convenient and fast to obtain 3D information of objects. As an important expression of 3D information of objects, point cloud has been developed in computer vision with point cloud as the background in recent years. In many fields, 3D vision plays an irreplaceable role in plane information, which extends the application of machine vision to new fields. This paper studies the problems related to the identification and pose estimation of automobile bumper by painting robot. The dependence of painting robot on 3D information determines the necessity of 3D vision. The application of the point cloud makes it possible for the painting robot to recognize the parts automatically, which is of great significance to the further development of the field of computer vision. In this paper, three dimensional point cloud recognition and pose estimation schemes are proposed, including point cloud processing and segmentation, point cloud recognition and pose estimation. First, the selection of the device to obtain the point cloud is determined, and the kinect is chosen as the vision hardware of the robot, and the complete point cloud of the full angle of view of each bumper is obtained manually. For the 3D point cloud obtained in each stage of the experiment, the obvious noise points are removed by means of direct pass filtering and statistical outlier filtering, and the point cloud density suitable for post-sequence processing is obtained by further sparse filtering. Because of the need of experiment, a method of distinguishing feature points is proposed, which keeps a high density for the point cloud around the Thrift feature point, and keeps the sparse point cloud in the far part from the feature point, and sets up a comparative experiment to verify the effect. The full view point cloud is simulated and the view feature histogram (VFH (Viewpoint Feature Histogram) of these single view point clouds is calculated. The principal component analysis (SVM (Support Vector Machine) classifier is trained by these data. In the phase of recognition and pose estimation, the minimum Euclidean distance based clustering segmentation method is used to segment the point cloud data with single view angle. The view feature histogram (VFH,) is extracted from each clustering, and then the trained SVM classifier is used to classify these VFH features. Kd-tree (kdemention) and BP (Back Propagation) neural network recognition are used to estimate the position and pose. In the part of recognition and pose estimation, a comparative experiment of using principal component analysis (PCA) to reduce PCA (Principal Component Analysis) and not to reduce dimension is also carried out. The experimental results show that the point cloud preprocessing, segmentation recognition and pose estimation designed in this paper are feasible, and the functions of recognition and pose estimation can be completed more quickly.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP242
【参考文献】
相关期刊论文 前10条
1 苏本跃;马金宇;彭玉升;盛敏;;基于K-means聚类的RGBD点云去噪和精简算法[J];系统仿真学报;2016年10期
2 袁华;庞建铿;莫建文;;基于体素化网格下采样的点云简化算法研究[J];电视技术;2015年17期
3 刘辉;王伯雄;任怀艺;李鹏程;;ICP算法在双目结构光系统点云匹配中的应用[J];清华大学学报(自然科学版);2012年07期
4 谭志国;鲁敏;胡延平;郭裕兰;庄钊文;;基于点云-模型匹配的激光雷达目标识别[J];计算机工程与科学;2012年04期
5 方旭;;基于BP神经网络人脸识别方法的研究与改进[J];电脑知识与技术;2011年04期
6 魏永超;刘长华;杜冬;;基于曲面分割的三维点云物体识别[J];光子学报;2010年12期
7 宇雪垠;曹拓荒;陈本盛;;基于特征脸的人脸识别及实现[J];河北工业科技;2009年05期
8 孙亚;;基于粒子群BP神经网络人脸识别算法[J];计算机仿真;2008年08期
9 梁新合;宋志真;;改进的点云精确匹配技术[J];装备制造技术;2008年03期
10 白裔峰;肖建;于龙;黄景春;;基于结构风险最小化的加权偏最小二乘法[J];计算机应用;2007年04期
相关博士学位论文 前1条
1 苏宏涛;基于统计特征的人脸识别技术研究[D];西北工业大学;2004年
相关硕士学位论文 前6条
1 张楠;铁路场景下三维点云识别与分类算法研究[D];北京交通大学;2016年
2 常江;基于特征匹配的三维点云配准算法研究[D];中北大学;2015年
3 林志强;面向智能服务机器人的物体感知研究[D];中国科学技术大学;2014年
4 赵春雷;粗糙空间上结构风险最小化原则[D];河北大学;2011年
5 戴永前;基于二维激光雷达的移动机器人三维环境的识别[D];南京理工大学;2007年
6 孙宇;基于激光雷达的机器人三维地形构建和草丛中障碍物检测[D];浙江大学;2007年
,本文编号:2250025
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2250025.html