多自由度气动伺服机械手轨迹跟踪控制研究
[Abstract]:In recent years, Cartesian coordinate Pneumatic manipulators, like other pneumatic manipulators, have become more and more important in industrial production. However, due to some factors, such as kinematic coupling, system friction and strong compressibility of transmission medium, the system is very nonlinear, because of the kinematic coupling of Cartesian coordinate pneumatic manipulator. As a result, the cylinder appears stagnation in the process of motion and the system control accuracy is not high. Therefore, it is of great significance for industrial production to improve the precision of motion control of pneumatic servo manipulator based on these factors. In order to improve the motion control accuracy of pneumatic servo manipulator, on the one hand, the kinematics decoupling of multi-degree-of-freedom pneumatic servo manipulator is carried out in this paper, and the mathematical model is established according to the working principle of pneumatic servo system to reduce the nonlinearity of the system. On the other hand, using LabVIEW as the upper computer motion control platform and using the NI-7358 motion control card to design the controller to reduce the motion error and improve the control accuracy. On the basis of consulting a large amount of data, this paper summarizes the research status of multi-degree-of-freedom pneumatic servo manipulators at home and abroad, analyzes their advantages and disadvantages, and determines the research content and research direction of this paper. Based on the D-H coordinate system method, the motion trajectory planning of multi-axis pneumatic servo manipulator is studied, and the mathematical model of pneumatic servo system is established according to the mass flow equation of pneumatic servo system and the equation of valve controlled cylinder system. Finally, the system transfer function is obtained. On the basis of understanding the working performance and principle of the cylinder, servo valve and grating position sensor of the experimental platform, this paper reconstructs the experimental platform of the Cartesian coordinate pneumatic manipulator. According to the principle of system signal transmission, the servo amplifier is redesigned and the system controller is designed. Then, in order to better control the trajectory tracking of Cartesian coordinate pneumatic manipulator, the tracking performance of the system based on PID control and PID control based on extended state observer is studied in theory and simulation. It is found by comparison that the tracking effect of the control system based on PID control is not good, and that the system based on extended state observer PID control has strong robustness to external disturbance and system uncertainty, so its tracking effect is better than that of PID control. Finally, the simulation tracking error of Cartesian coordinate pneumatic manipulator is 0.4mm. According to the working principle of the Cartesian coordinate pneumatic manipulator and the principle of PID control of the expanding state observer, the control program of the upper computer is compiled by using the LabVIEW software platform to control the motion of the manipulator. In order to ensure the stability of the signal input, the servo amplifier of the control system is tested. On the basis of the experimental platform, the multi-axis positioning and velocity control of the manipulator are experimented, which lays a foundation for the trajectory tracking experiment of the Cartesian coordinate pneumatic manipulator. On the basis of the previous work, the trajectory tracking experiment of pneumatic manipulator is carried out. The experiment on the XY axis of manipulator is carried out. By comparing the experimental results with the theoretical research and simulation results, the maximum tracking error of the Cartesian coordinate pneumatic manipulator is obtained, and the error reasons are analyzed. Finally, it shows that the manipulator based on this control method has better motion control effect.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP241
【参考文献】
相关期刊论文 前10条
1 王海强;黄海;;扩张状态观测器的性能与应用[J];控制与决策;2013年07期
2 朱学建;马永;冯渝;曾繁庄;赵伟;;直角坐标机器人瓶坯装箱生产线控制系统[J];食品与机械;2012年06期
3 彭芳;黎萍;周文辉;;直角坐标机械手多轴联动路径规划研究[J];组合机床与自动化加工技术;2012年07期
4 张志远;李琪;毕海深;;基于直角坐标机器人的软袋再包装自动上料系统[J];制造业自动化;2012年06期
5 王洪斌;王艳;;带有初始误差的机械手轨迹跟踪的快速迭代学习控制[J];系统工程理论与实践;2011年01期
6 王威;杨平;;智能PID控制方法的研究现状及应用展望[J];自动化仪表;2008年10期
7 刘军;薛必翠;郑军海;;自抗扰控制器的分析及设计[J];信息技术与信息化;2008年03期
8 王焱玉;田玲;;磁流变气动速度控制系统的实验研究[J];机床与液压;2007年08期
9 丛爽;刘宜;;多轴协调运动中的交叉耦合控制[J];机械设计与制造;2006年10期
10 谭冠政,徐雄,肖宏峰;工业机器人实时高精度路径跟踪与轨迹规划[J];中南大学学报(自然科学版);2005年01期
相关博士学位论文 前3条
1 王会方;串联机器人多目标轨迹优化与运动控制研究[D];浙江大学;2011年
2 Ogbobe,Peter Okwudilichukwu;六自由度运动仿真平台模态空间解耦控制研究[D];哈尔滨工业大学;2011年
3 毛新涛;气动机械手空间运动轨迹控制研究[D];哈尔滨工业大学;2010年
相关硕士学位论文 前8条
1 谭鑫平;基于LabVIEW气动机械手位置控制实验台的开发研究[D];昆明理工大学;2014年
2 曾浩;基于迭代学习理论的气动机械手速度控制研究[D];昆明理工大学;2013年
3 卢娟;BP神经网络PID在三容系统中的控制研究[D];合肥工业大学;2009年
4 崔宗伟;气缸低速摩擦力特性的研究及其建模与仿真[D];哈尔滨工业大学;2008年
5 陈娟;迭代学习控制方法在注塑机注射保压全过程中的应用[D];东北大学;2008年
6 宋利国;模糊控制及PID控制在气动伺服速度控制中的应用研究[D];昆明理工大学;2006年
7 陈小俭;气动机械手位置伺服控制系统及控制策略的研究[D];昆明理工大学;2005年
8 王秋菊;气动机械手位置伺服控制系统的研究[D];湖南大学;2004年
,本文编号:2257361
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2257361.html