基于图形表示方法的蛋白质亚细胞定位预测模型
[Abstract]:As one of the methods of comparative analysis of biological sequences, graphic representation has been widely used in the study of bioinformatics because of its visibility and easy numerical description. The main work of this paper is to propose two new graphical representations and apply them to sequence similarity analysis and subcellular location prediction respectively. Based on the hydrophobic index value of nucleotide triad, amino acid and the iterative function of different parameters, a new graphical representation is proposed, and a numerical characterization is given to quantify the similarity between different sequences. Using this method, the similarity of ND5 protein sequences of nine species and 尾 -globin sequences of 12 species are compared, and their evolutionary trees are constructed by using the distance matrix. The evolutionary tree obtained is consistent with the evolutionary relationship of species. In addition, the correlation coefficient is used to compare the proposed method with the traditional classical algorithm Clustal W and other graphical representation methods and the results of ClustalW. The comparison results show that the proposed method is effective in the study of sequence similarity analysis. Subcellular localization prediction has been a hot topic in bioinformatics. In this paper, we propose a new subcellular location prediction model based on graphical representation and BP neural network. Firstly, the distance matrix between protein sequences is calculated by using a new graphic representation of protein sequences and corresponding numerical characterization, and then introduced into BP neural network to obtain a new subcellular location prediction model. Furthermore, using the constructed prediction model, this paper has carried out experiments on two data sets, ZD98 and CL317, and the overall prediction accuracy on these two data sets is 94.9 and 87.4, respectively. In addition, using the two indexes of individual sensitivity and global prediction accuracy, we compare the prediction results on the same data set ZD98 and CL317 with the subcellular localization prediction method in the previous literature. The results show that the prediction model can effectively predict the subcellular localization of proteins.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:Q811.4;TP183
【相似文献】
相关期刊论文 前7条
1 刘连芳;以图形为基础的超媒体模型[J];广西科学;1995年03期
2 华骅;罗代升;杨晓敏;盛曦;周钊;;鼠标点击的图形代替快速识别算法[J];四川大学学报(自然科学版);2007年02期
3 王勇超,毕净,陈偕雄;基于0-1编码空间的谱系数图与K图的图形互换[J];浙江大学学报(理学版);2003年06期
4 李睿;唐胜群;;基于Eclipse平台的本体图形编辑器的设计与实现[J];武汉大学学报(理学版);2005年S2期
5 罗明良;;油气藏开发管理GIS中的图形表示技术[J];科技经济市场;2010年04期
6 刘冰;施洪洁;王泽生;;Eclipse中图形编辑器的研究[J];科技信息;2009年33期
7 ;[J];;年期
相关博士学位论文 前2条
1 袁春欣;核酸序列的图形表示理论及应用[D];大连理工大学;2007年
2 白凤兰;生物序列的图形表示及其应用[D];大连理工大学;2006年
相关硕士学位论文 前10条
1 徐苏宁;基于广义CGR的蛋白图形表示及其应用[D];浙江理工大学;2016年
2 喻道莉;基于图形表示方法的蛋白质亚细胞定位预测模型[D];浙江理工大学;2016年
3 燕永军;作业图形拓扑关系识别技术的研究与开发[D];西南交通大学;2008年
4 赵庆军;机械工程图图形检索技术研究[D];大连理工大学;2004年
5 沈冬冬;曲轴坐标系量化图形计算机辅助设计研究[D];河北师范大学;2008年
6 牟敬君;生物序列的图形表示及相似性分析[D];中国海洋大学;2008年
7 唐晓婵;DNA序列的图形表示方法及应用[D];兰州大学;2009年
8 李伟;DNA序列的图形表示方法研究[D];兰州大学;2010年
9 于成龙;DNA序列的图形表示及其相似性分析[D];浙江大学;2006年
10 李丹;基于蛋白质图形表示的膜蛋白跨膜区预测[D];浙江理工大学;2013年
,本文编号:2260378
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2260378.html