基于机器学习的视频序列中自动人数统计研究
[Abstract]:Intelligent video surveillance technology has increasingly become an important technical means of public security management. Automatic population statistics is one of the important contents of intelligent video surveillance. The research of this technology is of great significance for the realization of a safe society. Due to the large amount of information in the video, the existing methods fail to take both accuracy and real-time into account. Aiming at this problem, the main contents of this paper are as follows: aiming at the problem of poor tracking effect when the target moves faster, an improved multi-target tracking method is proposed. After the foreground target is extracted by background subtractive method, the target is predicted by Kalman, the result is used as the initial position of Mean-shift search, and the result is used as the observation value of Kalman correction stage. In addition, the occlusion factor is introduced to judge the occlusion of the target, and the adaptive processing of occlusion is realized. The experimental results show that the proposed method can effectively reduce the occurrence of loss and is robust to the targets moving faster in the scene, and the matching of the same target can be achieved in different frames. In view of the complexity of the operation process caused by the high dimension of human feature extracted, a multi-feature reduction method based on rough set is proposed. A series of representative target features are extracted, and then the features are reduced by rough set knowledge reduction. Experimental results show that the method can effectively reduce the recognition time and meet the real-time requirements in video processing. In addition, for the extracted pedestrian features, the population statistics method based on machine learning is studied, and the adaptive momentum factor is used to optimize the BP algorithm. The adaptive momentum factor is introduced to update the weights between layers. In order to complete the reverse propagation of the error. Experimental results show that the proposed method can effectively improve the instability of the BP algorithm caused by the improper value of the constant momentum factor and has a lower time complexity. The research method of automatic number statistics in video sequence can make full use of the information data in the surveillance video, realize the automatic detection and tracking of human body target, and grasp the accurate number of people entering and leaving. Therefore, it is of great significance for the management of public places and the prevention of crowd disasters to put an end to the safety hidden dangers which are easy to appear in high density crowd places.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP181;TN948.6
【参考文献】
相关期刊论文 前10条
1 蔡瑞初;谢伟浩;郝志峰;王丽娟;温雯;;基于多尺度时间递归神经网络的人群异常检测[J];软件学报;2015年11期
2 於正强;潘峗;宦若虹;;一种结合帧差法和混合高斯的运动检测算法[J];计算机应用与软件;2015年04期
3 张旭;蒋建国;洪日昌;杜跃;;基于朴素贝叶斯K近邻的快速图像分类算法[J];北京航空航天大学学报;2015年02期
4 黄凯奇;陈晓棠;康运锋;谭铁牛;;智能视频监控技术综述[J];计算机学报;2015年06期
5 王正友;;一种改进的基于SVM与Mean shift的目标跟踪[J];计算机仿真;2014年06期
6 张伟丽;江春华;郝宗波;;基于改进的均值漂移和卡尔曼滤波的目标跟踪算法[J];计算机应用与软件;2014年05期
7 华媛蕾;刘万军;;改进混合高斯模型的运动目标检测算法[J];计算机应用;2014年02期
8 赵健;张冬泉;;基于OpenCV的数字手势识别算法[J];计算机应用;2013年S2期
9 黎万义;王鹏;乔红;;引入视觉注意机制的目标跟踪方法综述[J];自动化学报;2014年04期
10 袁国武;陈志强;龚健;徐丹;廖仁健;何俊远;;一种结合光流法与三帧差分法的运动目标检测算法[J];小型微型计算机系统;2013年03期
相关硕士学位论文 前10条
1 赵玉丹;基于LBP的图像纹理特征的提取及应用[D];西安邮电大学;2015年
2 朱志玲;智能视频监控中行人跟踪技术研究[D];北京交通大学;2014年
3 赵明瀚;自适应的视频人数识别系统研究[D];北京邮电大学;2014年
4 刘艳丽;基于神经网络的运动目标检测与跟踪算法的研究[D];安徽工程大学;2013年
5 汤石晨;基于光流法的视频人数统计方法研究[D];华侨大学;2012年
6 吴培培;视频监控中的行人统计方法研究[D];华中科技大学;2012年
7 赖勇;出入口人数统计系统的设计与实现[D];电子科技大学;2010年
8 顾德军;基于视频图像处理的人数自动统计技术研究[D];南京航空航天大学;2010年
9 郭文;基于粗集理论的知识约简及其在风险识别中的应用[D];四川师范大学;2008年
10 徐昊;基于简单固定背景图像特征的人数统计[D];重庆大学;2007年
,本文编号:2260851
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2260851.html