极限学习机隐含层节点选择算法研究
[Abstract]:In this paper, a new machine learning method, called extreme learning machine (ELM).), is studied. As a learning algorithm for single hidden layer feedforward neural network (SLFNs), ELM has fast learning speed and good generalization ability. Hidden layer nodes play an important role in ELM algorithm. There are two methods to determine hidden layer nodes: one is pruning method and the other is incremental learning method. In this paper, we introduce two pruning methods, optimal pruning ELM (OP-ELM) and Tikhonov regular OP-ELM (TROP-ELM). Our main work is the incremental learning method of ELM. Incremental learning is to initialize a small network first and then add new nodes to the network until we generate a satisfied network. When a new hidden layer node is added to an existing network, it is often time-consuming to retrain the network. Error minimization extreme learning machine (EM-ELM) is a fast incremental method for calculating output weights. However, due to over-fitting and other reasons, EM-ELM can not always get good generalization ability. Based on the structural risk minimization criterion, we propose an improved EM-ELM method based on regularization, i.e. incremental regularization extreme learning machine (IR-ELM). When we add new hidden layer nodes to the network one by one, IR-ELM can quickly update the output weights, and at the same time ensure that the network has a good generalization ability, thus avoiding the problem mentioned above. At the same time, we propose a IR-ELM lifting method (EIR-ELM), which can select a better one from a set of candidate hidden layer nodes to join the network, further improve the generalization ability of the algorithm and produce a more compact network. For the classification and regression problems, we compare with the original ELM algorithm, OP-ELM and TROP-ELM algorithm and EM-ELM and EEM-ELM algorithm on the benchmark dataset, and verify the effectiveness of IR-ELM and EIR-ELM.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP181
【相似文献】
相关期刊论文 前10条
1 张义超;卢英;李炜;;RBF网络隐含层节点的优化[J];计算机技术与发展;2009年01期
2 翟俊海;李塔;翟梦尧;王熙照;;ELM算法中随机映射作用的实验研究[J];计算机工程;2012年20期
3 付英,曾敏,李兴源,刘俊勇,王贵德;隐含层对人工神经元网络电压安全评估的影响[J];电力系统自动化;1996年11期
4 潘昊;决定神经网络隐含层单元数目的自学习算法[J];湖北工学院学报;1998年01期
5 刘国超;贺彦林;朱群雄;;隐含层组合型ELM研究及应用[J];计算机与应用化学;2013年12期
6 王杰;毕浩洋;;一种基于粒子群优化的极限学习机[J];郑州大学学报(理学版);2013年01期
7 沈花玉;王兆霞;高成耀;秦娟;姚福彬;徐巍;;BP神经网络隐含层单元数的确定[J];天津理工大学学报;2008年05期
8 刘艳荣;;用于预测的BP网络结构设计[J];农业网络信息;2007年05期
9 王灿进;孙涛;石宁宁;王锐;王挺峰;王卫兵;郭劲;陈娟;;基于双隐含层BP算法的激光主动成像识别系统[J];光学精密工程;2014年06期
10 叶斌,雷燕;关于BP网中隐含层层数及其节点数选取方法浅析[J];商丘职业技术学院学报;2004年06期
相关硕士学位论文 前3条
1 苌群康;烟花算法优化极限学习机的研究及应用[D];郑州大学;2016年
2 徐志鑫;极限学习机隐含层节点选择算法研究[D];浙江大学;2017年
3 哈明光;单隐含层前馈神经网络结构选择研究[D];河北大学;2014年
,本文编号:2265767
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2265767.html