基于姿态测量模块和闭环检测算法的仿生SLAM研究
发布时间:2018-10-12 11:42
【摘要】:基于传感器模型的SLAM导航策略精度较高,但由于摩擦等因素误差长时间累计会造成里程计的漂移现象。依靠视觉里程计进行导航的Rat SLAM系统,通过在局部场景细胞中引入闭环检测策略实现累计误差的校正,在静态环境下具有一定的鲁棒性,但在复杂场景里,如移动障碍物的出现,视觉里程计会提取到错误的速度等姿态信息,导致航迹出现较大偏移,有时无法通过场景重定位进行闭环校正。结合两种模型的优势提出一种带姿态测量模块和闭环检测算法的仿生SLAM模型。实验表明,相较于仅带带闭环检测的Rat SLAM系统或仅由姿态测量模块构成的导航系统,本文提出的新系统更能适应长期复杂场景下的导航,且鲁棒性更强。
[Abstract]:The precision of SLAM navigation strategy based on sensor model is high, but the drift of mileage will be caused by the accumulated error of friction and other factors for a long time. The Rat SLAM system which is guided by vision odometer can correct the cumulative error by introducing closed-loop detection strategy into the cells of local scene. It is robust in static environment, but in complex scene. For example the appearance of moving obstacle the visual mileage meter will extract the wrong attitude information such as velocity and so on which leads to a large deviation of the track and sometimes can not be corrected by the scene re-location closed loop. Combining the advantages of the two models, a bionic SLAM model with attitude measurement module and closed loop detection algorithm is proposed. The experimental results show that the proposed new system is more robust than the Rat SLAM system with closed loop detection or the navigation system composed of attitude measurement modules.
【作者单位】: 安徽工程大学安徽省电气传动与控制重点实验室;
【基金】:2016年安徽高校自然科学研究项目(KJ2016A794) 2016安徽工程大学研究生实践与创新基金项目(Y040116004)
【分类号】:TP212;TP242
[Abstract]:The precision of SLAM navigation strategy based on sensor model is high, but the drift of mileage will be caused by the accumulated error of friction and other factors for a long time. The Rat SLAM system which is guided by vision odometer can correct the cumulative error by introducing closed-loop detection strategy into the cells of local scene. It is robust in static environment, but in complex scene. For example the appearance of moving obstacle the visual mileage meter will extract the wrong attitude information such as velocity and so on which leads to a large deviation of the track and sometimes can not be corrected by the scene re-location closed loop. Combining the advantages of the two models, a bionic SLAM model with attitude measurement module and closed loop detection algorithm is proposed. The experimental results show that the proposed new system is more robust than the Rat SLAM system with closed loop detection or the navigation system composed of attitude measurement modules.
【作者单位】: 安徽工程大学安徽省电气传动与控制重点实验室;
【基金】:2016年安徽高校自然科学研究项目(KJ2016A794) 2016安徽工程大学研究生实践与创新基金项目(Y040116004)
【分类号】:TP212;TP242
【参考文献】
相关期刊论文 前6条
1 宋镖;程磊;周明达;吴怀宇;陈洋;;基于惯导辅助地磁的手机室内定位系统设计[J];传感技术学报;2015年08期
2 李琳;林炳强;邹焱飚;;基于条纹式激光传感器的机器人焊缝跟踪系统研究[J];中国激光;2015年05期
3 辛煜;梁华为;梅涛;黄如林;杜明博;王智灵;陈佳佳;赵盼;;基于激光传感器的无人驾驶汽车动态障碍物检测及表示方法[J];机器人;2014年06期
4 李晓晨;姚素英;黄碧珍;郑炜;;一种应用于高动态范围CMOS图像传感器的曝光控制技术[J];传感技术学报;2013年03期
5 汪剑鸣;王曦;王胜蓓;李士心;冷宇;;室内惯性/视觉组合导航地面图像分割算法[J];中国惯性技术学报;2011年05期
6 张学习;杨宜民;;基于多传感器信息融合的移动机器人快速精确自定位[J];控制理论与应用;2011年03期
【共引文献】
相关期刊论文 前10条
1 常虹;桂伟;;激光传感器采集系统的智能模型车设计[J];激光杂志;2017年06期
2 凌超;嵇保健;洪磊;沈健;;一种激光视觉引导的自动识别V形焊缝的算法[J];组合机床与自动化加工技术;2017年06期
3 许f,
本文编号:2265978
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2265978.html