当前位置:主页 > 科技论文 > 自动化论文 >

AGV定位导引与控制软件系统的研究与设计

发布时间:2018-10-23 09:48
【摘要】:AGV是一种典型的轮式移动机器人,它集机械、光电、计算机、控制、仪器等多个学科技术于一体,具有高度自动化、安全可靠、应用灵活等优点。正是因为AGV的这些优越性,使其在自动化生产车间、现代物流系统中得到越来越广泛的应用,利用AGV构建自动化物流系统能极大的提高生产效率,因此,对AGV的研究具有深刻的理论及工程实践指导意义。定位导引精度和运动控制性能是AGV性能的核心评价指标。为提高AGV的定位精度与运动控制性能,本文通过调研大量国内外AGV文献资料,以两轮差速驱动AGV为研究对象,对其运动学、定位导引与运动控制等核心问题进行了深入的理论分析与研究,主要研究内容概括如下:1、介绍了AGV总体需求、工作流程、驱动系统的设计过程,通过对AGV运动的三个坐标系进行标定,推导了各坐标系下AGV的位姿表示及转换关系,从而完成了AGV的运动学建模与分析。根据总体方案,介绍了AGV定位导引系统的硬件方案,从而设计了导引算法,并分别设计了相对定位与绝对定位算法,最后通过自适应加权算法将两部分定位数据进行融合。2、开展了AGV运动控制的全面研究。通过Lyapunov理论以及位姿误差方程设计了运动控制律,利用MATLAB进行了仿真验证;然后通过建立AGV运动控制的静态特性、动态特性、综合特性评价模型,完成了对控制律作用效果的评价;最后,分析了控制律参数对运动控制的影响,并提出了滑模遗传算法,然后以评价函数为滑模遗传算法的适应度函数进行控制律参数的优化,并对优化前后AGV的运动性能进行了对比,从而验证了参数优化的重要性。3、分别设计了AGV控制系统的上、下位机软件。一方面,通过分析下位机的开发环境,并基于TwinCAT PLC的开发语言设计了AGV主体程序以及下位机人机交互界面;另一方面,对上位机软件进行功能模块划分,并采用Visual Studio软件为上位机软件开发平台,以XAML为界面语言、C#为后台设计语言,设计了WPF上位机软件平台。最后,设计了上位机与下位机软件的通讯方案,通过对控制软件进行调试,实现了上位机与下位机的通讯与数据传输,并测试了各功能模块的功能,从而完成了控制系统的软件设计与实现。
[Abstract]:AGV is a typical wheeled mobile robot, which integrates mechanical, photoelectric, computer, control, instrument and other disciplines. It has the advantages of high automation, safety and reliability, flexible application and so on. It is precisely because of these advantages of AGV that it is more and more widely used in automation workshop and modern logistics system. Using AGV to build automated logistics system can greatly improve the production efficiency. The study of AGV has profound theoretical and practical significance. Positioning guidance accuracy and motion control performance are the core evaluation indexes of AGV performance. In order to improve the positioning accuracy and motion control performance of AGV, this paper investigates a large number of domestic and international AGV documents, and takes the two-wheel differential drive AGV as the research object, and studies its kinematics. The main research contents are summarized as follows: 1. The overall requirements of AGV, the workflow and the design process of the driving system are introduced. By calibrating the three coordinate systems of AGV motion, the position and pose representation and transformation relation of AGV in each coordinate system are deduced, and the kinematics modeling and analysis of AGV are completed. According to the overall scheme, the hardware scheme of AGV positioning and guidance system is introduced, and then the guidance algorithm is designed, and the relative positioning algorithm and absolute positioning algorithm are designed respectively. Finally, the two parts of localization data are fused by adaptive weighting algorithm. 2. A comprehensive study of AGV motion control is carried out. The motion control law is designed by Lyapunov theory and pose error equation, and simulated by MATLAB, then the evaluation model of static, dynamic and comprehensive characteristics of AGV motion control is established. Finally, the influence of control law parameters on motion control is analyzed, and a sliding mode genetic algorithm is proposed, and then the evaluation function is used as the fitness function of sliding mode genetic algorithm to optimize the control law parameters. The kinematic performance of AGV before and after optimization is compared to verify the importance of parameter optimization. 3. The upper and lower computer software of AGV control system are designed respectively. On the one hand, by analyzing the development environment of the lower computer, and based on the development language of TwinCAT PLC, the main program of AGV and the man-machine interface of the lower computer are designed, on the other hand, the function modules of the upper computer software are divided. Using Visual Studio software as host computer software development platform, XAML as interface language and C # as backstage design language, the upper computer software platform of WPF is designed. Finally, the communication scheme between the upper computer and the lower computer is designed. By debugging the control software, the communication and data transmission between the upper computer and the lower computer are realized, and the functions of each function module are tested. Thus, the software design and implementation of the control system are completed.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前10条

1 王孙平;田乔;傅世忱;邵晓鹏;;QR码导航的室内目标搜寻机器人研究[J];计算机系统应用;2014年01期

2 武启平;金亚萍;任平;查振元;;自动导引车(AGV)关键技术现状及其发展趋势[J];制造业自动化;2013年10期

3 夏凌楠;张波;王营冠;魏建明;;基于惯性传感器和视觉里程计的机器人定位[J];仪器仪表学报;2013年01期

4 裴九芳;王海;许德章;;基于迭代学习控制的移动机器人轨迹跟踪控制[J];计算机工程与应用;2012年09期

5 郭一江;王新民;谢蓉;;基于光学导引的无人机自动着陆控制系统设计[J];飞行力学;2011年02期

6 武星;楼佩煌;唐敦兵;;自动导引车路径跟踪和伺服控制的混合运动控制[J];机械工程学报;2011年03期

7 夏光;甄小云;王寰宇;赵力帜;;凝聚导航精英 推动“北斗”应用产业蓬勃发展——第一届中国卫星导航学术年会召开[J];国际太空;2010年05期

8 张辰贝西;黄志球;;自动导航车(AGV)发展综述[J];中国制造业信息化;2010年01期

9 王皖君;张为公;;自动导引车导引技术研究现状与发展趋势[J];传感器与微系统;2009年12期

10 麻博;黄晋英;胡会珍;刘秀进;;智能机器人车自主导航控制系统设计[J];微计算机信息;2008年32期

相关博士学位论文 前1条

1 马海涛;非完整轮式移动机器人的运动控制[D];中国科学技术大学;2009年

相关硕士学位论文 前10条

1 陈端平;轮式移动机器人监控系统研究与开发[D];华南理工大学;2016年

2 张洪洋;基于TwinCAT的活塞异形外圆车床数控系统开发研究[D];山东大学;2015年

3 王志君;移动机器人全场定位系统的研究[D];电子科技大学;2015年

4 胡蝶;自动导引车(AGV)控制系统的研究与设计[D];湖北工业大学;2014年

5 管林波;移动机器人导航软件及部分关键技术研究[D];浙江大学;2014年

6 王琳华;磁导式AGV自动导航车控制系统的设计[D];长沙理工大学;2013年

7 侯立梅;基于多传感器数据融合智能导航车的算法研究[D];燕山大学;2013年

8 倪振;激光导引四轮差动全方位移动AGV关键技术研究[D];重庆大学;2013年

9 唐飞云;自主导航车轨迹跟踪控制方法研究[D];大连理工大学;2012年

10 邵永成;视觉导向的智能AGV控制系统和模糊控制器设计[D];昆明理工大学;2011年



本文编号:2288865

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2288865.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5bea1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com