面向地理课程自动解题的试题理解技术研究
[Abstract]:As one of the research hotspots in the field of artificial intelligence and natural language processing, automatic problem solving is the use of computer to solve the test questions of related courses automatically. The technique of question comprehension is to make the computer understand the meaning of text automatically. By analyzing the lexical, syntactic and semantic meaning of the text, the computer can solve the problem automatically. At present, the research on automatic problem solving is mainly aimed at mathematics courses, but less on other courses. Although geography course is a liberal arts subject, it contains rich knowledge points. "knowing astronomy on top, knowing geography below" also explains the importance of geography course. The research contents are as follows: (1) this paper classifies the geography course test questions, applies the SVM algorithm to the geography examination questions classification field, uses the Linear kernel function in the LIBSVM classification package to study and train the text of the test questions, and extracts the key words from the TFIDF. The feature vector is generated and the classification model is constructed for testing. The experimental results on the collected set of geography test questions show that the classification accuracy of Linear kernel function is better than 80%, and the text classification algorithm is applied in the field of geography course. (2) this paper solves the problem automatically for geography course. Based on the construction of geographical entity ontology, the semantic relations between conceptual entities are further obtained by semantic analysis of questions and options, and the semantic relations are transformed into problem solving rules for test questions. The experimental results on the collection of geographical test questions show that the rules obtained in this paper can obviously improve the solution of the text test questions, and also have some auxiliary effect on the solution of the chart type test questions.
【学位授予单位】:安徽工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.1;TP18
【参考文献】
相关期刊论文 前10条
1 王元卓;贾岩涛;刘大伟;靳小龙;程学旗;;基于开放网络知识的信息检索与数据挖掘[J];计算机研究与发展;2015年02期
2 赵丹;;SVM核函数与选择算法[J];数字技术与应用;2014年09期
3 汪海燕;黎建辉;杨风雷;;支持向量机理论及算法研究综述[J];计算机应用研究;2014年05期
4 马森;赵文;袁崇义;张世琨;王立福;;基于规则推理的语义检索若干关键技术研究[J];电子学报;2013年05期
5 崔建明;刘建明;廖周宇;;基于SVM算法的文本分类技术研究[J];计算机仿真;2013年02期
6 欧石燕;;面向关联数据的语义数字图书馆资源描述与组织框架设计与实现[J];中国图书馆学报;2012年06期
7 徐雷;;SPARQL查询优化[J];现代图书情报技术;2012年10期
8 陈欢欢;;图书情报学领域本体的构建研究[J];图书馆学研究;2011年21期
9 蔡艳婧;程显毅;潘燕;;面向自然语言处理的人工智能框架[J];微电子学与计算机;2011年10期
10 张文秀;朱庆华;;领域本体的构建方法研究[J];图书与情报;2011年01期
相关硕士学位论文 前6条
1 熊逵;基于SPAROL的语义网数据查询系统的设计与实现[D];浙江大学;2015年
2 曹蓓;基于本体的文胸产品知识模型构建研究[D];西安工程大学;2013年
3 高超;中文问题分类中特征选择研究[D];安徽工业大学;2011年
4 王记伟;基于规则推理的应急事件自动处理技术研究[D];东华大学;2009年
5 聂旭飞;基于本体和规则的推理在物流中的应用研究[D];天津大学;2007年
6 艾伟;本体的构造及其应用研究[D];武汉理工大学;2005年
,本文编号:2290438
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2290438.html