鸽群优化算法及其应用研究
[Abstract]:Pigeon swarm optimization, a new heuristic algorithm, was first proposed by Professor Duan Haibin in 2014. The idea of pigeon swarm algorithm is to simulate the homing process of pigeon swarm using the combination of geomagnetic field and landmarks. Pigeon swarm algorithm has the advantages of relatively simple principle, few parameters to be adjusted and easy to implement. There are also obvious advantages such as relatively simple computation and strong robustness, and the advantages of faster convergence rate compared with other algorithms. At the same time, the pigeon swarm optimization algorithm has some shortcomings, such as low convergence accuracy, local optimum and poor stability. Therefore, pigeon swarm optimization algorithm needs to be further studied and extended in theory and application. This paper analyzes the shortcomings of pigeon swarm optimization algorithm and improves the algorithm from the aspects of adding convergence factor, position factor, speed factor and subgroup mutation strategy. The improved algorithm is also applied to practical optimization problems. The main work involved will be summarized as follows: (1) improving pigeon swarm algorithm by adding convergence factor, increasing position factor and speed factor. It can not only enhance the flight vitality of pigeons, improve the diversity of pigeon population, but also effectively avoid the phenomenon of premature convergence of pigeon population, so that the pigeon swarm optimization algorithm has certain competitiveness. And completed the improved pigeon swarm optimization algorithm related standard function optimization test. (2) by adding subgroup mutation strategy to improve the pigeon swarm optimization algorithm, the idea of subgroup mutation strategy is applied to pigeon swarm optimization algorithm. It overcomes the premature convergence of pigeon swarm optimization algorithm and increases the potential search space of pigeon population. In order to enhance the local search ability of pigeon swarm optimization algorithm, the greedy strategy is also introduced, and the improved pigeon swarm optimization algorithm is applied to solve the 0-1 knapsack problem. (3) the pigeon swarm optimization algorithm is combined with simulated annealing algorithm to solve the 0-1 knapsack problem. The combined algorithm not only has the characteristics of pigeon swarm algorithm, but also can transfer the bad solution according to the probability, and accept the inferior solution with a certain probability, so that the pigeon swarm optimization algorithm can jump out of the local optimal solution. In order to achieve the goal of global optimization. Based on the fusion with the algorithm, the adaptive temperature decay coefficient is introduced to the pigeon swarm optimization algorithm, which can automatically adjust the search conditions according to the current environment to achieve the purpose of improving the search efficiency. In this chapter, the improved pigeon swarm algorithm is applied to solve the path planning problem of unmanned submersible vehicle, so as to increase the scope of application of the improved pigeon swarm algorithm, and also show the effectiveness and feasibility of the algorithm.
【学位授予单位】:广西民族大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18
【参考文献】
相关期刊论文 前10条
1 段海滨;叶飞;;鸽群优化算法研究进展[J];北京工业大学学报;2017年01期
2 袁晗;徐春梅;杨平;许姗姗;;一种基于子群变异的粒子群优化算法[J];计算机应用研究;2017年04期
3 任作琳;田雨波;孙菲艳;;具有强开发能力的风驱动优化算法[J];计算机科学;2016年01期
4 段海滨;邱华鑫;范彦铭;;基于捕食逃逸鸽群优化的无人机紧密编队协同控制[J];中国科学:技术科学;2015年06期
5 李佩泽;王姗姗;樊岩;;基于改进蝙蝠算法的背包问题求解[J];计算机应用研究;2015年11期
6 兰少峰;刘升;;布谷鸟搜索算法研究综述[J];计算机工程与设计;2015年04期
7 杨震;马天宝;余文;李艳梅;;广义分子计算模型在0-1背包问题中的应用[J];计算机科学;2014年S2期
8 李枝勇;马良;张惠珍;;函数优化的量子蝙蝠算法[J];系统管理学报;2014年05期
9 陈信;周永权;;基于猴群算法和单纯法的混合优化算法[J];计算机科学;2013年11期
10 李辉;郭怡;;遗传算法及其优化[J];河南农业;2013年20期
相关博士学位论文 前2条
1 张兰华;复杂网络建模的仿真与应用研究[D];大连理工大学;2013年
2 宋胜利;混合粒子群协同优化算法及其应用研究[D];华中科技大学;2009年
相关硕士学位论文 前4条
1 李宁;基于网络传输的四旋翼飞行器在森林防火中的应用研究[D];山东大学;2015年
2 韩月娇;粒子群算法的改进及其在BP神经网络中的应用[D];南昌航空大学;2012年
3 田辉辉;智能优化算法的改进及其在多维空间谱估计中的应用[D];哈尔滨工业大学;2008年
4 史今驰;背包问题的实用求解算法研究[D];山东大学;2005年
,本文编号:2293280
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2293280.html