面向城市照明系统的智能故障诊断与预测方法研究
[Abstract]:With the continuous growth of national economy and the development of urban construction, the scale and complexity of urban lighting system are increasing year by year. Correspondingly, the quality of service provided by the system directly affects the safety of more and more pedestrians and vehicles. On the one hand, it is necessary to diagnose the system faults in time, on the other hand, it is necessary to predict the possible future failures and arrange reasonable maintenance and repair strategies. The traditional fault diagnosis method of urban lighting system is mainly aimed at the electrical characteristics of equipment and requires the participation of professionals. However, it lacks accurate prediction of fault in system maintenance and maintenance, and relies more on blind random inspection process. Although the appearance of intelligent city lighting monitoring system can diagnose phenomenal faults through monitoring operation data to some extent, it lacks the ability to analyze the correlation between failure and operation data and to provide fault prediction. Based on this research status, the paper is supported by Sichuan Science and Technology support Project "key Technology Research and Application demonstration of Urban Green Lighting Energy-saving system (Seven Strategies emerging)" (Project number: 2016GZ0312). The composition and causes of failure of urban lighting system are summarized and the corresponding analysis models are designed for the fault diagnosis problem of street lamp node and fault prediction problem in regional distribution system. In order to achieve efficient and rapid deployment and save resources. The core work of the thesis is as follows: firstly, the thesis analyzes the problem of the large-scale deployment of the street lamp node fault diagnosis in the urban lighting system. Aiming at the requirement of quick response and less human participation, the paper uses extreme learning machine to model the problem abstractly. By analyzing the approximate approximation ability of LLMs with different structures and combining the incremental learning process, a fault diagnosis model of street lamp nodes with adaptive parameter search process is designed. Secondly, the paper analyzes the requirement of constructing fault prediction model through the operation data and external data of regional distribution system in the urban lighting system, and carries on the mathematical modeling to the prediction model. By combining the three methods of extreme learning machine, autoregressive model and sliding window with attenuation, a fault prediction model which can make use of the data generated in real time for online learning process is implemented in this paper. Finally, the paper validates the street lamp fault diagnosis model and the regional distribution system prediction model by using the operation data of Yibin city lighting system, and explains the extensibility of the model to the input attributes by introducing external data. In addition, the intelligent fault diagnosis and prediction system of urban lighting is designed and implemented based on the proposed model. The results of experimental verification and system implementation show that the two kinds of models proposed in this paper have high classification and prediction accuracy in street lamp fault diagnosis and regional distribution system fault prediction respectively.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP277;TU113.666
【参考文献】
相关期刊论文 前10条
1 刘国庆;史小春;廖强;;基于神经网络分类算法的电机轴承故障检测方法[J];微特电机;2017年01期
2 陈维兴;曲睿;孙毅刚;;基于改进Apriori算法的地面空调间歇故障预测[J];计算机应用;2016年12期
3 汪思成;肖林;严慧玲;;基于不同误差函数的神经网络求解线性方程组[J];吉首大学学报(自然科学版);2016年06期
4 赵虎;;基于极限学习机的故障诊断方法研究综述[J];中国新通信;2016年17期
5 李蔚;俞芸萝;盛德仁;陈坚红;;基于动态数据挖掘的热力参数传感器故障诊断[J];振动.测试与诊断;2016年04期
6 张雨浓;肖争利;丁思彤;毛明志;刘锦荣;;带后续迭代的双极S函数激励的WASD神经网络[J];中山大学学报(自然科学版);2016年04期
7 李海林;郭崇慧;杨丽彬;;基于时间序列数据挖掘的故障检测方法[J];数据采集与处理;2016年04期
8 曾晓勤;周建新;郑星;钟水明;;一种高效二进前馈神经网络学习算法[J];哈尔滨工业大学学报;2016年05期
9 边新光;陈俊铭;朱小英;李德山;王芳;;关于路灯故障检测系统的设计[J];山西电子技术;2016年01期
10 董勇;蒋艳凰;卢宇彤;周恩强;;面向磁盘故障预测的机器学习方法比较[J];计算机工程与科学;2015年12期
相关会议论文 前1条
1 陈乃刚;王家玮;郑贵德;许彦冰;;基于大数据技术的智慧城市照明节能研究[A];2014电力行业信息化年会论文集[C];2014年
相关博士学位论文 前2条
1 尚华;两类时间序列模型的异常值检测研究[D];首都经济贸易大学;2016年
2 范玉刚;基于Kernel的机器学习在建模与分类问题的应用研究[D];浙江大学;2006年
相关硕士学位论文 前6条
1 翟增辉;基于近域去重法改进的BP神经网络算法[D];安徽大学;2016年
2 刘静雅;基于极限学习机的航空发动机传感器故障诊断研究[D];中国民航大学;2015年
3 陈建华;基于机器学习的银行设备故障告警系统的设计[D];北京邮电大学;2015年
4 周浩;基于机器学习的E级系统故障预测关键技术研究[D];国防科学技术大学;2011年
5 李yN;城市照明远程监控系统的开发及应用[D];郑州大学;2009年
6 王飞;路灯远程监控诊断系统的研究开发[D];南京理工大学;2004年
,本文编号:2294339
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2294339.html