基于多目标优化的云任务调度算法研究
[Abstract]:Cloud computing, as the most widely used commercial distributed computing technology, has a large scale of servers and users, so the system needs to schedule and manage various tasks in the cloud environment frequently. The scheduling of execution time and execution cost in cloud environment is a multi-objective combinatorial optimization problem of NP-hard. However, the current cloud task scheduling generally adopts a heuristic method of single objective optimization with constrained execution cost or execution time. The multiuser execution time and execution cost of complex cloud systems with load balancing can not be fully satisfied. Therefore, on the basis of multi-objective optimization, it is of great significance to study the task scheduling algorithm in cloud environment. By analyzing the characteristics of cloud tasks, this paper improves the cloud task model, and selects execution time, execution cost and load balance as the optimization objectives, and optimizes the scheduling process of cloud tasks, based on this multi-objective optimization. A cloud task scheduling model is established in the cloud environment. The main research work is as follows: 1) aiming at the diversity of task requirements in the cloud environment, the concept, architecture and technical characteristics of cloud computing are analyzed, and the cloud task model is improved. This paper introduces the concept of multi-objective optimization. 2) aiming at the scheduling requirements of mixed cloud tasks, the paper selects the three objectives of cloud users' concern about the execution time and cost, and the load balancing that cloud service providers are concerned about. As the optimization objective of task scheduling in cloud environment, a multi-objective optimization model is established to deal with this mixed cloud task. 3) considering the dynamic change of cloud environment and the characteristics of cloud task scheduling, Ant colony genetic algorithm (AGA) is improved, and a multi-objective cloud task scheduling algorithm based on adaptive genetic ant colony algorithm (AGA) is proposed. The high precision of ant colony algorithm is integrated to avoid the deficiency of local solving ability of genetic algorithm and the lack of initial pheromone of ant colony optimization algorithm, which is proved by Cloud Sim simulation platform. The algorithm has obvious advantages in the two target problems of execution time and execution cost that cloud users are concerned about, and the load balancing concerned by cloud service providers. 4) aiming at the problem of genetic algorithm and large-scale cloud task scheduling, the algorithm has obvious advantages. Two local heuristic algorithms, mountain climbing and Tabu search, are introduced to make full use of the advantages of genetic algorithm (GA) for global optimization and for mountain climbing and Tabu search. The deficiency of the local solution ability of the genetic algorithm and the weak global optimization ability of the mountain climbing algorithm and the Tabu search algorithm are avoided. Finally, the cultural gene algorithm based on the Tabu search algorithm proposed in this paper is verified on the CloudSim simulation platform. In large scale cloud task scheduling environment, it shows higher execution efficiency and better load balance.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TP301.6
【参考文献】
相关期刊论文 前10条
1 聂世青;钟勇;崔梦天;;一种基于负载熵的层次负载均衡算法[J];计算机应用;2016年S2期
2 谭文安;查安民;陈森博;;优化粒子群的云计算任务调度算法[J];计算机技术与发展;2016年07期
3 何婧媛;;云计算仿真工具CloudSim的研究与应用[J];科技资讯;2016年02期
4 周春霞;周井泉;常瑞云;;基于Memetic算法的多目标复杂网络社区检测[J];计算机技术与发展;2016年01期
5 周袅;葛洪伟;苏树智;;基于信息素的自适应连续域混合蚁群算法[J];计算机工程与应用;2017年06期
6 徐小龙;杨庚;李玲娟;王汝传;;面向绿色云计算数据中心的动态数据聚集算法[J];系统工程与电子技术;2012年09期
7 邹永贵;万建斌;;云计算环境下的资源管理研究[J];数字通信;2012年04期
8 刘之家;张体荣;谢雄程;;基于云计算的“用户期待”任务调度算法的研究[J];大众科技;2011年04期
9 李建锋;彭舰;;云计算环境下基于改进遗传算法的任务调度算法[J];计算机应用;2011年01期
10 晏婧;吴开贵;;适用于实例密集型云工作流的调度算法[J];计算机应用;2010年11期
相关博士学位论文 前3条
1 刘琨;云计算负载均衡策略的研究[D];吉林大学;2016年
2 邓见光;云计算任务调度策略研究[D];华南理工大学;2014年
3 蔡斌;基于文化基因算法的车间作业调度理论研究及实践[D];重庆大学;2012年
相关硕士学位论文 前10条
1 杨倍思;云计算环境中基于同态加密的密文计算方法设计与实现[D];南京邮电大学;2016年
2 蒋燕燕;面向未来网络的虚拟网络映射研究[D];南京邮电大学;2016年
3 赵科伟;云环境下的任务调度算法研究[D];南京邮电大学;2016年
4 陈睿;基于改进粒子群蚁群算法的多目标双边匹配问题研究[D];广西大学;2016年
5 光洋;爱恩斯坦棋计算机博弈系统的研究与实现[D];安徽大学;2016年
6 周刚;基于多态蚁群算法的云计算节能资源调度[D];重庆大学;2016年
7 张博洋;基于Hadoop的动车组故障诊断关键技术的研究与实现[D];北京交通大学;2016年
8 窦文生;基于交通时空大数据的异常行为模式挖掘研究[D];杭州电子科技大学;2016年
9 侍倩;基于差分进化算法的多目标优化问题的研究[D];东华大学;2016年
10 穆聪聪;仓储管理货位分配策略及应用研究[D];华中科技大学;2015年
,本文编号:2299384
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2299384.html