当前位置:主页 > 科技论文 > 自动化论文 >

基于分数阶转速调节器的永磁同步电机模型预测控制系统研究

发布时间:2018-10-30 12:21
【摘要】:对于PMSM(Permanent Magnet Synchronous Motor,永磁同步电机)驱动系统而言,传统控制方法主要有矢量控制和直接转矩控制两种方法。其中基于定子电流的矢量控制由于固有的电流内环使得系统响应较慢;而直接转矩控制系统虽然响应快但其转矩脉动大的缺陷,严重影响了其运行性能。FCS-MPC(Finite Control Set Model Predictive Control,有限控制集模型预测控制)是近年来出现的一种高性能控制算法。FCS-MPC基于模型预测控制原理,是一种在线优化控制算法,该方法概念简单,具有较强约束处理能力,并能同时考虑存在的非线性因素。通常情况下PMSM FCS-MPC系统的转速环采用的是常规PI转速调节器,其控制精度的鲁棒性较差。因此,采用更先进的控制策略来设计PMSM转速调节器具有重要意义,其中采用分数阶控制器的策略成为近几年的研究热点。分数阶微积分理论是整数阶微积分理论的推广和扩展,具有以下优势:(1)分数阶微积分具有全局性;(2)分数阶微积分能够更加精确的描述实际系统的动态行为,使得数学建模更接近实际系统;(3)分数阶微积分算子具有记忆性和遗传性。近些年,将分数阶理论应用到现代控制理论中来产生了分数阶控制器,在继承和发扬传统控制器优点的同时,利用分数阶微积分特有的性能,可以改善和弥补传统控制器的缺点和不足,使得所设计的控制器具有分数阶和传统控制器的双重优点。主要研究内容分为以下几个方面:(1)基于传统PI转速调节器,设计PMSM模型预测电流控制系统,并和传统的矢量控制系统进行对比分析。(2)在PMSM模型预测电流控制系统下设计分数阶积分滑模转速调节器和分数阶终端滑模转速调节器,并从滑模到达时间、收敛时间及减小抖振等方面对比分析分数阶滑模控制器和整数阶滑模控制器的优缺点。(3)在考虑电机参数变化及外部扰动的不确定的情况下,设计了扩展分数阶滑模扰动观测器,并与分数阶终端滑模转速调节器构成一种复合控制策略。(4)在一相电流传感器正常的情况下设计了基于分数阶自适应律的电流观测器,在准确估计另一相电流的同时实现了定子电阻的在线辨识。
[Abstract]:For the PMSM (Permanent Magnet Synchronous Motor, permanent magnet synchronous motor (PMSM) drive system, the traditional control methods mainly include vector control and direct torque control. The vector control based on stator current makes the response of the system slow because of the inherent current inner loop. Although the direct torque control system is fast in response, its torque ripple is large, which seriously affects its running performance. FCS-MPC (Finite Control Set Model Predictive Control, FCS-MPC is an online optimal control algorithm based on the theory of model predictive control. This method is simple in concept and has strong ability to deal with constraints. The existence of nonlinear factors can be considered at the same time. In general, the conventional PI speed regulator is used in the speed loop of PMSM FCS-MPC system, and the robustness of the control precision is poor. Therefore, it is of great significance to adopt more advanced control strategy to design the PMSM speed regulator, in which the fractional controller strategy has become a hot research topic in recent years. Fractional calculus theory is the extension and extension of integral order calculus theory, which has the following advantages: (1) fractional calculus has global property; (2) the fractional calculus can more accurately describe the dynamic behavior of the actual system, which makes the mathematical modeling more close to the actual system; (3) the fractional calculus operator has memory and heredity. In recent years, fractional order theory has been applied to modern control theory to produce fractional order controller. While inheriting and carrying forward the advantages of traditional controller, the special performance of fractional calculus is utilized. It can improve and remedy the shortcomings and shortcomings of the traditional controller, so that the designed controller has the advantages of fractional order and traditional controller. The main research contents are as follows: (1) based on the traditional PI speed regulator, the PMSM model predictive current control system is designed. And compared with the traditional vector control system. (2) the fractional integral sliding mode speed regulator and fractional terminal sliding mode speed regulator are designed under the PMSM model predictive current control system, and the time of arrival from the sliding mode is obtained. The advantages and disadvantages of fractional sliding mode controller and integer order sliding mode controller are compared and analyzed in terms of convergence time and buffeting reduction. (3) considering the variation of motor parameters and the uncertainty of external disturbance, An extended fractional sliding mode disturbance observer is designed, and a compound control strategy is constructed with fractional terminal sliding mode speed regulator. (4) the current observer based on fractional order adaptive law is designed under the normal condition of one-phase current sensor. At the same time, the on-line identification of stator resistance is realized while estimating the current of another phase accurately.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;TM341

【参考文献】

相关期刊论文 前10条

1 李国飞;滕青芳;王传鲁;张雅琴;;应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J];浙江大学学报(工学版);2017年03期

2 滕青芳;李国飞;朱建国;郭有光;;三相四开关容错逆变器的PMSM驱动系统FCS-MPC策略[J];电机与控制学报;2016年10期

3 滕青芳;李国飞;朱建国;郭有光;;基于扩张状态观测器的无速度传感器容错逆变器驱动永磁同步电机系统自抗扰模型预测转矩控制[J];控制理论与应用;2016年05期

4 张永昌;杨海涛;魏香龙;;基于快速矢量选择的永磁同步电机模型预测控制[J];电工技术学报;2016年06期

5 李国飞;滕青芳;高锋阳;张雅琴;王传鲁;;容错三相四开关逆变器PMSM的模型预测转矩控制[J];信息与控制;2015年06期

6 杨荣荣;付永领;王岩;王德义;郭建文;张玲;;电液伺服泵的分数阶无抖振滑模控制[J];北京航空航天大学学报;2016年08期

7 谭健;周洲;祝小平;张乐;;飞翼布局无人机分数阶积分滑模姿态控制[J];控制理论与应用;2015年05期

8 薛薇;李永丽;路鸦立;;永磁同步电机分数阶智能积分调速控制[J];电机与控制学报;2015年05期

9 滕青芳;柏建勇;朱建国;郭有光;;基于滑模模型参考自适应观测器的无速度传感器三相永磁同步电机模型预测转矩控制[J];控制理论与应用;2015年02期

10 吴德会;李钷;;基于FCS-MPC的电压跟踪调制方法[J];电力自动化设备;2015年03期

相关博士学位论文 前4条

1 邓立为;分数阶滑模控制理论及其应用研究[D];哈尔滨工业大学;2014年

2 张晓光;永磁同步电机调速系统滑模变结构控制若干关键问题研究[D];哈尔滨工业大学;2014年

3 徐世许;不确定系统的终端滑模变结构控制[D];复旦大学;2012年

4 秦昌茂;高超声速飞行器分数阶PID及自抗扰控制研究[D];哈尔滨工业大学;2011年

相关硕士学位论文 前2条

1 朱明君;感应电机单电流传感器调速系统控制策略及参数辨识方法研究[D];哈尔滨工业大学;2013年

2 刘洋;永磁同步电机伺服系统实用技术的研究[D];南京航空航天大学;2009年



本文编号:2299999

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2299999.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b8ef0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com