面向轮胎制造企业的能耗优化方法研究
[Abstract]:With the rising of energy price and the increasing of environmental problems, the development of traditional manufacturing industry is restricted by energy cost and environmental problems. Tire manufacturing industry is a high energy consumption and high pollution enterprise. It is one of the effective means to reduce the energy consumption cost by reducing the energy consumption in the production process. As an important part of production management, production scheduling is the potential direction for enterprises to achieve energy saving and emission reduction. Aiming at the problem that the energy consumption factor is not considered in the machine scheduling optimization strategy of tire mill workshop, the energy consumption optimization model based on the influence factor is established. The total completion time and energy consumption cost are taken as the constituent elements in the model. The comprehensive cost of these two elements is taken as the goal to solve the problem. At the same time, the influence factor is added to indicate the degree of attention to the cost of time and energy consumption in production. For the established energy consumption optimization model, an improved adaptive genetic algorithm (Another Adaptive Genetic Algorithm, AAGA) is designed to solve the scheduling optimization problem. The AAGA algorithm is based on the analysis of the causes of precocity. A method for evaluating the degree of individual difference in each generation is proposed, and then the upper and lower limits of crossover and variation probability of each generation are dynamically adjusted according to the evaluation index during the evolution of the population. At the same time, the crossover and mutation probability of each generation is adaptively adjusted according to individual adaptability. Based on the above crossover and mutation strategies, the flow shop data set provided by Tillard is used to experiment. The experimental results show that the AAGA algorithm can find a better solution. Finally, the energy consumption optimization problem is solved by using the proposed algorithm based on the actual production data. The comparison data show that the application effect of AAGA, SGA (Simple Genetic Algorithm,SGA) and AGA (Adaptive Genetic Algorithm,AGA) has some advantages. Furthermore, the AAGA algorithm is used to verify the energy consumption optimization model based on the influence factor, which shows that the energy consumption optimization model established in this paper can achieve different energy saving effects.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ330.8;TP18
【参考文献】
相关期刊论文 前10条
1 李小霞;黄小毛;刘建晓;刘峰;;面向低制造能耗的车间作业调度优化仿真[J];系统仿真学报;2016年01期
2 杨殿才;郭辉;宁维巍;朱可辉;;轮胎行业密炼用电削峰填谷研究[J];橡塑技术与装备;2014年09期
3 杨力;刘程程;宋利;盛武;;基于熵权法的煤矿应急救援能力评价[J];中国软科学;2013年11期
4 刘献礼;陈涛;;机械制造中的低碳制造理论与技术[J];哈尔滨理工大学学报;2011年01期
5 曹华军;陶绪财;刘飞;;基于批量分割及交货期约束的机床节能型优化调度方法及应用[J];机械科学与技术;2010年06期
6 陈峰;杨殿才;朱可辉;王海清;;基于MES的轮胎成型和硫化生产调度系统[J];计算机与应用化学;2010年01期
7 芮执元;冯亚岗;刘军;刘美萍;;JIT柔性混合流水车间生产调度问题研究[J];机械与电子;2009年10期
8 欧微;邹逢兴;高政;徐晓红;;基于多目标粒子群算法的混合流水车间调度方法研究[J];计算机工程与科学;2009年08期
9 常建娥;何燕;;一种基于遗传算法求解车间调度问题的优化方法[J];物流科技;2006年02期
10 任子武;伞冶;;自适应遗传算法的改进及在系统辨识中应用研究[J];系统仿真学报;2006年01期
相关硕士学位论文 前8条
1 李冰;考虑调整时间的柔性流水车间能耗优化调度模型研究及应用[D];广东工业大学;2015年
2 张志鹏;基于多目标遗传粒子群混合算法求解混合流水车间调度问题研究[D];大连交通大学;2014年
3 唐万和;轮胎硫化车间能耗优化调度问题研究[D];广东工业大学;2014年
4 郑庆仁;低碳调度模型研究及其在轮胎制造过程中的应用[D];华南理工大学;2012年
5 杨淑爱;制造过程中的低碳优化模型研究及应用[D];华南理工大学;2012年
6 王伟;面向能耗优化的车间调度方法研究及其应用环境开发[D];哈尔滨工业大学;2011年
7 陈莉莉;多目标粒子群算法及其在车间调度中的应用研究[D];浙江工业大学;2011年
8 王万雷;基于遗传算法的车间作业调度问题研究[D];昆明理工大学;2002年
,本文编号:2303523
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2303523.html