当前位置:主页 > 科技论文 > 自动化论文 >

基于ARM-FPGA的EtherCAT总线多轴运动控制系统设计

发布时间:2018-11-03 14:08
【摘要】:当前,新一轮科技革命和产业变革正在发生,制造业正在向以设备互联通信为基础的智能制造发展。多轴运动控制系统作为工业自动化设备的重要组成部分,在各行业都有广泛的应用,EtherCAT总线具有实时性好、速度快、同步性高、开放性好、拓扑灵活、成本低等优点,特别适合网络化多轴运动控制系统的通信,因此,研究发展EtherCAT总线多轴运动控制技术对于提升自动化设备的性能,乃至于提高制造业的生产力水平具有重要意义。本文设计了一种基于ARM-FPGA的EtherCAT总线多轴运动控制系统。首先进行了方案设计,该系统主要由EtherCAT主站和从站运动控制板组成,运动控制板采用ARM+FPGA架构,可以控制6个运动轴,有32路数字量输入,16路数字量输出,带有EtherCAT总线和RS485总线接口。其次,选择了ARM和FPGA芯片,采用Altum Designer软件设计了ARM和FPGA的核心电路、供电电路以及外部接口电路的原理图,并据此设计了PCB版图,制作了运动控制板样板。然后,采用Verilog硬件描述语言设计了FPGA与ARM通信的FSMC模块、I/O控制模块及轴控制模块,在轴控制模块的设计中分析了目前常用的加减速算法的性能及硬件实现的可行性,在FPGA中硬件实现了直线和S形两种加减速算法,并进行了ModeSim仿真实验。最后,选择CoDeSys作为EtherCAT主站,并编写了运动控制板EtherCAT从站描述文件;对触摸屏进行了组态开发,设计了触摸屏界面,分配了Modbus协议通道;以及开发了运动控制板上ARM中运行的EtherCAT从站程序和Modbus通信程序,完成了系统软件设计。在上述软硬件设计开发的基础上,采用装有CoDeSys运行时系统的树莓派做主站搭建了一套EtherCAT总线运动控制系统,采用昆仑通态触摸屏搭建了一套RS485总线运动控制系统,并分别进行了功能实验。实验结果表明两套运动控制系统均可实现定位,点动等基本控制功能。此外,还将该系统做了应用测试,结果表明可以满足控制需求。本文设计的运动控制系统开放性好、网络化扩展性强、性能优越、成本低,在工业自动化设备中具有广阔的应用前景。
[Abstract]:At present, a new round of technological revolution and industrial revolution is taking place, and the manufacturing industry is developing to intelligent manufacturing based on equipment communication. As an important part of industrial automation equipment, multi-axis motion control system is widely used in various industries. EtherCAT bus has the advantages of good real-time, high speed, high synchronicity, good openness, flexible topology, low cost and so on. It is especially suitable for the communication of networked multi-axis motion control system. Therefore, the research and development of multi-axis motion control technology based on EtherCAT bus is of great significance to improve the performance of automation equipment and even to improve the productivity of manufacturing industry. A EtherCAT bus multi-axis motion control system based on ARM-FPGA is designed in this paper. The system is mainly composed of EtherCAT master station and slave station motion control board. The motion control board adopts ARM FPGA architecture, which can control 6 motion axes with 32 digital input and 16 digital output. With EtherCAT bus and RS485 bus interface. Secondly, ARM and FPGA chips are selected, the core circuits of ARM and FPGA are designed by Altum Designer software, the schematic diagram of power supply circuit and external interface circuit are designed, and the layout of PCB is designed accordingly, and the motion-control board template is made. Then, the FSMC module, I / O control module and axis control module of FPGA and ARM communication are designed by using Verilog hardware description language. In the design of axis control module, the performance of commonly used acceleration and deceleration algorithm and the feasibility of hardware implementation are analyzed. Two acceleration and deceleration algorithms, linear and S-shaped, are implemented in FPGA hardware, and ModeSim simulation experiments are carried out. Finally, CoDeSys is chosen as the EtherCAT master station, and the EtherCAT slave station description file of motion control board is written, the touch screen is configured, the touch screen interface is designed, and the Modbus protocol channel is allocated. The EtherCAT slave station program and Modbus communication program running in ARM on the motion control board are developed, and the system software design is completed. On the basis of the design and development of the hardware and software mentioned above, a set of EtherCAT bus motion control system is set up by using raspberry pie station with CoDeSys runtime system, and a set of RS485 bus motion control system is built by using Kunlun on-state touch screen. Functional experiments were carried out respectively. The experimental results show that the two motion control systems can realize the basic control functions such as location and point motion. In addition, the system is tested, and the results show that the system can meet the control requirements. The motion control system designed in this paper has the advantages of good openness, strong network expansibility, superior performance and low cost, so it has a broad application prospect in industrial automation equipment.
【学位授予单位】:青岛理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP273

【相似文献】

相关期刊论文 前10条

1 刘宗礼;张洛平;苏春堂;;面向对象程序设计方法在多轴运动控制系统中的应用[J];河南科技大学学报(自然科学版);2009年01期

2 钱少明,朱根兴,黄中原,王绍让;基于PC-based SSCNET总线的多轴运动控制系统研究[J];机械制造;2005年06期

3 许万;陈幼平;陈冰;谢经明;;基于实时以太网的多轴运动控制网络的研究[J];制造业自动化;2008年11期

4 张旭辉;张维光;;基于PC的自动超声检测系统精确定时方法研究[J];组合机床与自动化加工技术;2006年02期

5 叶莘;;多轴运动控制系统和实时通信网络[J];自动化博览;2007年02期

6 吴钦木;李叶松;;网络化多轴运动控制系统消息调度策略研究[J];微特电机;2010年02期

7 董谦,程桦;分布式多轴运动控制系统[J];武汉工业学院学报;1999年04期

8 王学军;多轴运动控制系统的控制方式[J];电子工业专用设备;2002年03期

9 钱晨,禹涛,王钦若;多线程技术在多轴运动控制中的应用[J];机电工程技术;2004年09期

10 李伟;段翠芳;滑伟娟;;多轴运动控制系统的设计[J];农业科技与装备;2010年08期

相关会议论文 前1条

1 刘广超;姜家吉;周学才;;WIN2000下多轴运动控制的研究[A];中南六省(区)自动化学会第24届学术年会会议论文集[C];2006年

相关博士学位论文 前3条

1 许万;基于实时以太网的多轴运动控制系统研究[D];华中科技大学;2009年

2 顾强;基于SoC的多轴运动控制系统及其同步控制研究[D];华中科技大学;2015年

3 乔志峰;适用于复杂形面加工的多轴运动控制系统设计理论与方法研究[D];天津大学;2012年

相关硕士学位论文 前10条

1 李晓;基于PLC的木工机械多轴运动控制系统设计与研究[D];山东大学;2015年

2 李刚;多轴运动控制平台管理软件设计与实现[D];电子科技大学;2014年

3 胡彦兵;基于DSP的多轴运动控制系统研究[D];华中科技大学;2014年

4 高军神;基于以太网实时多轴运动控制研究与实现[D];哈尔滨理工大学;2017年

5 刘鹏;基于ARM-FPGA的EtherCAT总线多轴运动控制系统设计[D];青岛理工大学;2016年

6 叶志坚;可重构嵌入式以太网分布式多轴运动控制研究[D];湖北工业大学;2011年

7 卢金铎;多轴运动控制系统人机界面设计与控制策略的研究[D];山东大学;2006年

8 张少林;基于网络的多轴运动控制技术及电子凸轮实现[D];华中科技大学;2013年

9 吴云;基于以太网的多轴运动控制系统研究[D];浙江工业大学;2012年

10 姚必计;工业CT多轴运动控制系统设计与实现[D];重庆大学;2013年



本文编号:2308017

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2308017.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户38301***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com