基于红外视频的机器人夜间视觉三维显示研究
[Abstract]:In the field of robot application, many operations in bad environment are usually carried out at night without light. The range of night vision and the ability of scene recognition are directly related to the task execution ability of robot. In night mode, infrared imaging system is usually used to obtain night scene images. Infrared images are characterized by low signal-to-noise ratio (SNR), low contrast and lack of depth sense. The restoration of 3D models of scene or object from night infrared video is a hot topic in the field of computer vision. It needs to integrate computer science, signal processing and other scientific knowledge, as well as in visual navigation, military affairs, etc. Industry and other fields have a very broad application prospects. Therefore, it is of great significance to carry out 3D scene reconstruction for night infrared video. The main content of this paper is divided into three parts: the first part is the research background significance of this topic and the overview of the existing basic theory and methods of 3D reconstruction algorithm; In the second part, the camera calibration algorithm, infrared video preprocessing algorithm and direct and sparse vision odometer are introduced. In the third part, infrared video scene is reconstructed based on direct method and sparse method. The innovation of this paper lies in the realization of 3D scene reconstruction of monocular infrared video for the first time. The reconstruction algorithm adopts direct and sparse visual mileometer. Firstly, the inner parameters of thermal imager are obtained by calibrating the infrared thermal imager. Then the direct and sparse visual odometer models are constructed, the front end of the visual odometer performs the tasks of frame management and point management, and the total photometric error is optimized by sliding window and Gao Si Newton iteration. All the variables dependent on the direct and sparse visual odometer models are calculated to complete the tasks of locating the thermal imager and building the map. The experimental results show that this method can reconstruct monocular infrared video in real time and accurately.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP242
【参考文献】
相关期刊论文 前10条
1 沈振一;孙韶媛;赵海涛;;基于PP-MRF模型的单目车载红外图像三维重建[J];东华大学学报(自然科学版);2015年03期
2 何h?;达飞鹏;;置信度传播和区域边缘构建的立体匹配算法[J];中国图象图形学报;2011年11期
3 尹传历;刘冬梅;宋建中;;改进的基于图像分割的立体匹配算法[J];计算机辅助设计与图形学学报;2008年06期
4 周秀芝;王润生;;基于像元集的置信传递立体匹配[J];中国图象图形学报;2008年03期
5 徐青;王敬东;李鹏;李洪海;;基于图像分割的快速立体匹配算法[J];计算机工程;2006年22期
6 彭启民,贾云得;一种基于最小割的稠密视差图恢复算法[J];软件学报;2005年06期
7 张旭明,徐滨士,董世运;用于图像处理的自适应中值滤波[J];计算机辅助设计与图形学学报;2005年02期
8 孟晓桥,胡占义;摄像机自标定方法的研究与进展[J];自动化学报;2003年01期
9 张宇,王希勤,彭应宁;自适应中心加权的改进均值滤波算法[J];清华大学学报(自然科学版);1999年09期
10 张健新,段发阶,钟明,叶声华;用于三维尺寸检测的双目视觉传感器[J];计量学报;1999年02期
相关博士学位论文 前3条
1 周骏;多视图图像三维重建若干关键技术研究[D];电子科技大学;2013年
2 郭龙源;计算机视觉立体匹配相关理论与算法研究[D];南京理工大学;2009年
3 赵颜利;计算机视觉三维重建若干技术研究[D];南京理工大学;2007年
相关硕士学位论文 前4条
1 王洁;成像目标虚拟圆特征及其应用[D];西安电子科技大学;2013年
2 戴嘉境;基于多幅图像的三维重建理论及算法研究[D];上海交通大学;2012年
3 王贻术;基于单目视觉的障碍物检测与三维重建[D];浙江大学;2007年
4 佘彦杰;基于多幅图像序列的三维重建[D];吉林大学;2006年
,本文编号:2313312
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2313312.html