当前位置:主页 > 科技论文 > 自动化论文 >

三角履带轮减震系统动力学建模与分析

发布时间:2018-11-07 12:30
【摘要】:随着人类对自然探索的不断深入,人们迫切的需要一种能在多种复杂环境下快速运动的全地形移动平台。目前的全地形移动平台普遍存在着无法同时应对多种环境条件的问题,当环境发生变化时,单一行走机构难以做到适应自如;而同时安装两种行走机构的移动平台又存在着结构复杂,动力分配困难等问题。三角履带轮作为一种全新的行走机构,有机整合了轮式和履带式行走机构的优点,能够同时提高机体的环境适应能力和移动平稳程度,同时不会对机体结构造成影响,对于全地形移动平台的发展提供了一个新的思路。针对当前全地形机器人移动平台普遍存在的难以应对快速变换环境的问题。本文针对三角履带轮的结构进行了动力学建模,并通过动力学模型对三角履带轮的减震系统结构参数进行了优化处理,通过联合仿真验证了优化后的减震效果并进行了进一步优化,证明了三角履带轮的环境适应能力与运动的平稳性,为下一步的结构设计提供参考,具体开展如下研究:对三角履带轮的结构与受力进行了分析,重点分析了三角履带轮系中各组成构件的功能以及内部力的分配。利用牛顿欧拉法对各主要构件以及不同位置的履带的受力情况进行了解算,从而获得了构件运动加速度与其所受到的力之间的关系,为动力学建模提供了基础。在受力分析的基础上,结合地形随机不平度函数、牛顿欧拉法与迭代法,建立了三角履带轮动力学模型,并对该模型进行了离散化求解,为下一步仿真建模做好准备。根据三角履带轮的动力学模型,在RecurDyn中建立了三角履带轮的联合仿真实验平台,利用动力学模型对三维仿真模型的运动进行控制,在多种复杂环境下对联合仿真实验平台进行了仿真实验,对三角履带轮的环境适应能力进行了验证;并通过优化设计对动力学模型的结构参数进行了优化,通过优化前后的指标对比验证了三角履带轮的运动平稳性从而证明了三角履带轮作为一种行走机构,能够大大提高全地形机器人移动平台的性能。
[Abstract]:With the deepening of human exploration of nature, people are in urgent need of an all-terrain mobile platform that can move rapidly in a variety of complex environments. At present, the whole terrain mobile platform is generally unable to cope with various environmental conditions at the same time. When the environment changes, it is difficult for a single walking mechanism to adapt freely. However, there are some problems such as complicated structure and difficult power distribution in the mobile platform with two kinds of walking mechanism installed at the same time. As a new type of walking mechanism, triangle crawler wheel integrates the advantages of wheeled and tracked walking mechanism, and can improve the adaptability of environment and the degree of smooth movement of the body at the same time, and it will not affect the structure of the body at the same time. It provides a new idea for the development of all terrain mobile platform. At present, the mobile platform of all terrain robot is difficult to deal with the problem of fast changing environment. In this paper, the dynamic modeling of the structure of the triangular crawler wheel is carried out, and the structural parameters of the damping system of the triangulated crawler wheel are optimized by the dynamic model. Through the joint simulation, the effect of the optimized vibration absorption is verified and further optimization is carried out, which proves the adaptability of the triangular crawler wheel to the environment and the smoothness of the motion, and provides a reference for the next structural design. The main contents of this paper are as follows: the structure and force of the triangular crawler wheel are analyzed, and the function of the components and the distribution of the internal force in the triangular crawler gear train are analyzed. Newtonian Euler method is used to calculate the forces on the main components and tracked tracks in different positions, thus the relationship between the acceleration of motion and the forces on which the components are subjected is obtained, which provides the basis for dynamic modeling. On the basis of force analysis, combined with terrain random irregularity function, Newton Euler method and iterative method, the dynamic model of triangular crawler wheel is established, and the model is solved discretely to prepare for the next simulation modeling. According to the dynamic model of the triangular crawler wheel, the joint simulation experiment platform of the triangulated crawler wheel is established in RecurDyn, and the motion of the three-dimensional simulation model is controlled by the dynamic model. Simulation experiments were carried out on the joint simulation experiment platform in various complex environments, and the adaptability of the triangular crawler wheel was verified. The structural parameters of the dynamic model are optimized by the optimization design. The kinematic stability of the triangulated crawler wheel is verified by comparing the indexes before and after the optimization, which proves that the triangular crawler wheel is a kind of walking mechanism. It can greatly improve the performance of the whole terrain robot mobile platform.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前10条

1 吕凯;穆希辉;杜峰坡;郭浩亮;赵晓东;;重载三角橡胶履带轮设计关键问题综述[J];装甲兵工程学院学报;2016年01期

2 章淑萍;;可更换三角形履带车轮结构轻量化设计[J];机电技术;2014年05期

3 陈安成;穆希辉;杜峰破;郭浩亮;;小型履带车动力传动系统设计[J];机械制造与自动化;2013年03期

4 钱尧一;侯亮;林文广;林森泉;;三角履带诱导轮动力学建模与脱轮仿真[J];机电工程;2013年02期

5 潘晓春;姚凯;;履带轮转换技术设计研究[J];机电产品开发与创新;2012年04期

6 吴瑾;;全地形车(ATV)国内外研究现状与应用前景分析[J];科技创新导报;2012年19期

7 杨立浩;王胜军;王佑君;;履带轮转换技术的应用现状与发展趋势[J];机电产品开发与创新;2011年02期

8 王克成;;橡胶履带力学分析及优化设计[J];中国橡胶;2010年04期

9 侯忠明;姚凯;王胜军;;可更换橡胶履带轮的发展与应用[J];橡胶工业;2009年12期

10 袁芬;张明;;高速履带车辆诱导轮张紧力的计算与仿真[J];车辆与动力技术;2008年01期

相关硕士学位论文 前3条

1 蔡岗础;油茶果采摘机三角橡胶履带轮底盘的设计与力学分析[D];中南林业科技大学;2014年

2 邢全道;高地隙窄形橡胶履带轮水旱兼用宽幅植保施肥机的设计与性能试验[D];南京农业大学;2013年

3 李卫;橡胶履带的综合性能分析[D];烟台大学;2012年



本文编号:2316381

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2316381.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户11fe3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com