基于改进粒子滤波的微弱信号检测与跟踪
[Abstract]:In recent years, weak signal detection and tracking technology has been widely used in industry, traffic, national defense and other fields, but with the higher accuracy of detection and tracking, the difficult problem of weak signal separation has become increasingly prominent. Based on this, a pre-detection tracking method based on improved particle filter is proposed to accurately track weak targets at low signal-to-noise ratio (SNR). Firstly, this paper discusses the advantages and disadvantages of the two tracking methods before and after detection, and models the observation model and the target motion model of the passive sensor. The Bayesian estimation and particle filter theory under the framework of Bayesian estimation are introduced in detail, and the superiority of particle filter detection before tracking method is introduced, which provides a theoretical basis for further research. Secondly, the traditional particle filter detection before tracking algorithm is introduced, and the model is verified. However, due to the defects of the traditional algorithm itself, the particle distribution is uneven and the diversity is insufficient, so several commonly used improved algorithms are introduced. On the basis of the improved algorithm, the crossover and mutation operations in evolutionary computation are introduced into Monte Carlo algorithm, and the Metropolis-Hastings (MH) resampling method is introduced in the process of resampling. To some extent, the algorithm improves the lack of particle diversity and reduces the running time of the algorithm. The simulation results show that the efficiency and tracking accuracy of the improved quasi-Monte Carlo intelligent particle filter algorithm are greatly improved. Finally, aiming at the problem of detecting and tracking weak targets with uniform acceleration and turning motion, a multi-model combined modeling method is proposed based on the improved quasi-Monte Carlo intelligent particle filter algorithm. On this basis, an improved Quasi-Monte Carlo intelligent particle filter interactive multi-model detection pre-tracking algorithm is proposed to optimize the model. The simulation results show that the improved algorithm can reduce the number of particles to a certain extent and accurately track the weak targets with uniform acceleration and turn motion under the premise of ensuring the tracking accuracy. It is proved that the improved quasi-Monte Carlo intelligent particle filter algorithm is effective and reliable for weak target detection and tracking.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212.9;TN713
【参考文献】
相关期刊论文 前10条
1 陈伟强;陈军;张闯;宋立国;谭卓理;;基于智能粒子滤波的多传感器信息融合算法[J];计算机应用;2016年12期
2 刘威;赵文杰;李成;徐忠林;李婷;;粒子滤波理论框架及在目标跟踪中的应用[J];自动化与仪器仪表;2016年03期
3 秦占师;张智军;曹晓英;陈稳;;基于SVM-UPF的雷达弱小目标检测前跟踪算法[J];火力与指挥控制;2016年03期
4 刘霞;龙飞;张延升;;雷达机动目标跟踪无源定位优化研究[J];计算机仿真;2016年03期
5 闫怀仁;杨慕升;;基于改进的Hough变换的直线提取算法[J];红外技术;2015年11期
6 郭云飞;唐学大;骆吉安;邵根富;;一种基于QMC-APF的检测前跟踪算法[J];现代雷达;2015年02期
7 边旭;李江勇;;基于粒子滤波的TBD算法研究[J];激光与红外;2015年01期
8 汲清波;王飞祥;谢宇;;基于RF5的红外弱小目标跟踪系统的实时性改进方法[J];应用科技;2014年05期
9 张永军;;机动目标静态多模型算法[J];电脑知识与技术;2014年02期
10 吴瑕;陈建文;鲍拯;赵志国;;混合估计多模粒子滤波的机动弱目标检测前跟踪算法[J];控制与决策;2014年03期
相关硕士学位论文 前9条
1 张浩;低空目标探测雷达高速目标检测与跟踪技术研究与实现[D];电子科技大学;2016年
2 夏玫;基于雷达辅助知识的微弱目标跟踪算法研究[D];电子科技大学;2015年
3 戴石礼;微弱信号的定位与跟踪技术研究[D];电子科技大学;2015年
4 唐学大;基于粒子滤波的机动弱目标检测前跟踪算法研究[D];杭州电子科技大学;2015年
5 张峰瑞;粒子滤波TBD及并行实现技术研究[D];电子科技大学;2014年
6 苏金洲;基于粒子滤波的检测前跟踪算法研究及在GPU平台上的实现[D];电子科技大学;2013年
7 孙星;基于粒子滤波的弱小目标检测前跟踪算法研究[D];西安电子科技大学;2013年
8 张晓东;基于蒙特卡罗算法的移动机器人自定位技术研究[D];沈阳理工大学;2011年
9 张惠娟;基于贝叶斯滤波的先跟踪后检测算法研究[D];西北工业大学;2006年
,本文编号:2323659
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2323659.html