高精度编码器数字化接口的研究与实现
[Abstract]:The sinusoidal encoder is a precise sensor for measuring angular displacement and angular velocity. With the increasing demand for resolution and precision in numerical control system and modern industrial control system, it can not meet the demand of real-time feedback precision of industrial control system by relying only on original resolution or quaternion counting. Require higher resolution and accuracy of encoder position, rotational speed and other feedback signals. There are two methods to improve the resolution of encoder: hardware and software. Due to the very high requirement of hardware method to process design, the software method is used to subdivide the encoder signal electronically. To improve the resolution and accuracy of encoder signals. In order to improve the resolution and accuracy of position information of encoder and obtain more accurate information of motor position and speed, a signal processing system of encoder based on improved coordinate rotation digital calculation (CORDIC) algorithm is designed in this paper. First, the encoder signal is processed by signal conditioning circuit, such as differential amplification and shaping filtering, then the coarse code information is obtained by quaternion counting, and then the refined interpolation information is obtained by using the electronic subdivision method based on the improved CORDIC algorithm. Finally, the coarse code and the precision information are integrated to obtain high resolution and high precision position information of motor angle. In terms of velocimetry, the variable M method and the full differential method are used. In the aspect of communication, the interface module and upper computer communicate through CANopen protocol. A 16-bit AD converter and a 2048-line sinusoidal encoder are used. The angle of the encoder reaches 27 bits high resolution. The interface module of encoder is tested. The results show that the precision of position value measured by four times frequency is about 100 angle seconds, and the position value precision obtained by electronic subdivision method is about 60 angle seconds. The relative error of total differential velocimetry is smaller than that of variable M velocimetry, and the accuracy is higher.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212
【参考文献】
相关期刊论文 前10条
1 陈雷;洪占勇;;增量式编码器信号处理系统设计及仿真测试[J];现代电子技术;2015年23期
2 刘小宁;谢宜壮;陈禾;闫雯;陈冬;;CORDIC算法的优化及实现[J];北京理工大学学报;2015年11期
3 韦湘宜;丁红昌;曹国华;;光电编码器检测技术的研究现状及发展趋势[J];电子科技;2015年09期
4 周济;;智能制造——“中国制造2025”的主攻方向[J];中国机械工程;2015年17期
5 张道勇;黄杨根;张辉;;编码器正余弦信号细分技术应用研究[J];机床与液压;2015年16期
6 王少君;刘永强;杨绍普;廖英英;郝高岩;;基于光电编码器的测速方法研究及实验验证[J];自动化与仪表;2015年06期
7 王海勇;鲍远慧;;一种变M/T测速方法的研究与实验[J];测控技术;2014年05期
8 林长友;梅恒;;光栅编码器发展现状分析与展望[J];世界制造技术与装备市场;2014年01期
9 冯英翘;万秋华;宋超;孙莹;赵长海;;基于坐标旋转数字计算算法的小型光电编码器细分[J];光学学报;2014年02期
10 刘海龙;肖海峰;贺昱曜;;基于正余弦编码器的位置细分技术综述[J];微特电机;2013年12期
相关硕士学位论文 前8条
1 王亚洲;光电编码器莫尔条纹测速方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
2 江凌峰;开关电源电路设计及其高压功率器件研制[D];厦门大学;2014年
3 杨晓航;CANopen从站通讯模块的开发与应用[D];南京理工大学;2014年
4 赵文峰;基于闭环反馈算法的高精度编码器细分系统设计[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
5 刘仲杰;CANopen协议在嵌入式系统中的应用研究[D];哈尔滨理工大学;2013年
6 黄明亮;基于eCos和Web服务器的远程电机控制系统设计与实现[D];苏州大学;2012年
7 陶仁浩;基于增量式光电编码器的高精度位置检测技术研究[D];南京航空航天大学;2012年
8 赖世勋;基于CANopen和μC/OS-Ⅱ的CAN网络通信技术研究[D];合肥工业大学;2011年
,本文编号:2325550
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2325550.html