ZnO传感器与色谱分离相结合的POPs快速检测与识别方法
[Abstract]:Persistent organic pollutants (pops) are toxic chemicals synthesised by human beings which can persist in the natural environment and cause harm to human beings and other organisms. The massive use of such substances by human beings has led to global environmental pollution. Also because persistent organic pollutants are persistent, bioaccumulative and mobile, leading to the global diffusion and accumulation of persistent organic pollutants in organisms, These conditions exacerbate the environmental and human hazards of persistent organic pollutants. Therefore, the establishment of a persistent organic pollutant monitoring system is particularly important. It is necessary to develop equipment for the detection of persistent organic pollutants in order to improve the efficiency and accuracy of the detection of persistent organic pollutants, in view of the actual situation of environmental hazards caused by persistent organic pollutants, To make a new contribution to the detection of persistent organic pollutants. In this paper, a portable detection instrument for persistent organic pollutants (pops) is designed and manufactured, which can be used to detect toxaphene persistent organic pollutants (pops) and interfering substances. The method of ZnO sensor combined with chromatographic separation, combined with computer technology, is used to detect persistent organic pollutants. It has the advantages of convenience, rapidity, high accuracy and so on. Before the pattern feature extraction and training recognition of the sample data detected by the instrument, we normalize the data to eliminate the influence caused by the external factors, such as dimension, sample concentration, environmental temperature, and so on. PCA algorithm and LDA algorithm are used in feature extraction of data. Finally, a classifier is trained by SVM and radial basis function (RBF) artificial neural network according to the extracted pattern features, and the samples are classified and identified. The experimental results show that the system can be used to classify and identify persistent organic pollutants and has a good classification effect.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X830;TP212.9
【参考文献】
相关期刊论文 前10条
1 李艳玲;李民强;刘术军;余道洋;;易燃液体残留物实时检测系统设计与实现[J];仪表技术;2014年06期
2 严林;陆安祥;栾云霞;任东;王纪华;;基于图像处理的农药残留速测卡快速检测[J];食品安全质量检测学报;2014年03期
3 周丽;董亮;史双昕;张利飞;张秀蓝;杨文龙;李玲玲;黄业茹;;液相色谱-串联质谱法测定水环境中的十氯酮[J];色谱;2014年03期
4 应攀;沈海斌;;基于PCA+LDA的特征融合的3D手写识别特征集取技术[J];电子技术;2013年03期
5 李玉美;班睿;;我国水环境中持久性有机污染物污染的现状及研究进展[J];贵州农业科学;2011年01期
6 张蕾;;基于RBF神经网络的中医药科研绩效评价方法分析[J];无线互联科技;2010年04期
7 成云飞;陈泓;沙淼淼;杨明;;易制毒化学品检测仪[J];警察技术;2009年02期
8 杨明;疏天民;成云飞;;气相色谱易制毒化学品检测仪的研制[J];自动化与仪器仪表;2009年01期
9 刘辉;杨俊安;许学忠;;基于ICA和HMM的低空声目标识别方法[J];声学技术;2008年06期
10 石自强;李海峰;孙佳音;;基于SVM的流行音乐中人声的识别[J];计算机工程与应用;2008年25期
相关硕士学位论文 前2条
1 李艳玲;火灾现场易燃液体残留物传感检测与识别的方法[D];中国科学技术大学;2014年
2 刘慧;基于KNN的中文文本分类算法研究[D];西南交通大学;2010年
,本文编号:2368729
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2368729.html