激光导航AGV在特征地图中的全局定位方法研究
[Abstract]:Automatic guided vehicle (Automated guided vehicle,AGV) has been developed rapidly in intelligent manufacturing and logistics system, and its global positioning is one of the research hotspots in autonomous navigation technology. Markov (Markov) localization algorithm is a global localization method based on probability distribution. It has strong generality and can solve multi-mode and nonlinear problems. At present, there is no probabilistic global localization method in feature map. Based on the establishment of AGV's Markov localization model, the global localization problem in feature map is studied in this paper. When the Markov algorithm is applied to the global localization of the automatic guided vehicle in the feature map, there is often a problem that the correlation between the sensor observation and the map is not unique, which leads to the failure of the location. A new method of Markov location calculation without data association is proposed. By using Gao Si kernel function, the sparse features in the environment are combined to form smooth dense curves, and the observation models in Markov location are calculated by comparing the similarity of the two dense curves obtained by sensor observation and algorithm prediction. At the same time, the attitude information of AGV is obtained by using the electronic compass sensor directly, so that the algorithm only focuses on solving the reliability of the discrete position of the AGV without having to calculate the three-dimensional data of the AGV position at the same time. On the basis of solving the failure problem of conventional Markov localization method in centrosymmetric environment, the computational complexity of the algorithm is reduced, and the effectiveness of the global localization method is verified by simulation analysis. Aiming at the problem of large computation and low efficiency of Markov localization algorithm, a variable resolution discrete plane grid method based on quadtree model is proposed based on the AGV attitude obtained directly from electronic compass information. By reducing the three-dimensional state space of AGV position and pose estimation to two-dimensional plane grid and reducing the repeated calculation of grid region where the information degree of map is usually zero in the process of location, the computational efficiency and the convergence speed of reliability extremum of the algorithm are improved. The simulation results verify the effectiveness of the variable resolution grid discretization method. Compared with the fixed resolution Markov location method based on Gao Si kernel function, this method is more efficient for global positioning of AGV. Finally, by comparing the AGV trajectory estimated by extended Kalman filter in semi-closed environment, it is verified that this method is even if the initial position and orientation of AGV are unknown. The estimated AGV trajectory accuracy is still higher and the localization result is more effective.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 李延炬;肖宇峰;古松;贺希;郭正平;;基于激光传感器的SLAM数据关联算法的研究[J];微型机与应用;2017年02期
2 李建雄;孟如;;智能仓储机器人全局定位方法研究[J];工业控制计算机;2016年09期
3 陈冠中;陈庆新;毛宁;俞爱林;张惠煜;;具有随机路径AGV的制造系统排队网建模与分析[J];计算机集成制造系统;2017年01期
4 华剑锋;张丰;杜震洪;刘仁义;李荣亚;;基于变分辨率栅格模型的启发式有向搜索最优路径算法[J];浙江大学学报(理学版);2016年01期
5 李聪波;肖卫洪;杜彦斌;顾小进;穆安勇;;基于改进ICP算法的损伤零部件精确配准方法[J];计算机集成制造系统;2016年04期
6 高巍;邵晓东;刘焕玲;;基于粒子滤波的自动装配定位方法[J];计算机集成制造系统;2014年07期
7 吴玉秀;孟庆浩;曾明;;基于声音的分布式多机器人相对定位[J];自动化学报;2014年05期
8 王炜;陈卫东;王勇;;基于概率栅格地图的移动机器人可定位性估计[J];机器人;2012年04期
9 满增光;叶文华;肖海宁;钱晓明;;从激光扫描数据中提取角点特征的方法[J];南京航空航天大学学报;2012年03期
10 郭利进;师五喜;李颖;李福祥;;基于四叉树的自适应栅格地图创建算法[J];控制与决策;2011年11期
相关博士学位论文 前2条
1 满增光;基于激光雷达的室内AGV地图创建与定位方法研究[D];南京航空航天大学;2014年
2 王卫华;移动机器人定位技术研究[D];华中科技大学;2005年
相关硕士学位论文 前3条
1 李泽yN;基于轮廓扫描的自动导引车定位与导引[D];哈尔滨工业大学;2016年
2 郭丽晓;基于拓扑地图的AGV智能路径规划技术研究[D];浙江大学;2013年
3 闫宇航;改进粒子滤波算法在FPGA中的研究与实现[D];北京交通大学;2009年
,本文编号:2371055
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2371055.html