机载陀螺稳定平台的自抗扰控制算法研究
[Abstract]:As a typical servo control system, gyro stabilized platform has been widely used in high technology fields such as missile, ship, airborne, aerospace and so on. With the demand of modern war, the precision of gyroscope stabilization platform is higher and higher. The traditional PID control method can not meet the demand of the control system. Therefore, by studying the modeling of control system, friction analysis and improvement of ADRC algorithm, this paper improves the immunity and tracking characteristics of ADRC. The stability accuracy of gyroscope stabilized platform is greatly improved. Auto-disturbance rejection control (ADRC) technology is a new control strategy. It has the advantages of independent of the precise model of the controlled system, simple algorithm and good robustness. It can be used to estimate and compensate all kinds of disturbances in the controlled system in real time. This is a classic control technology does not have. In this paper, the airborne gyroscope stabilized platform with two axes and four frames is used as the controlled object, and the related theory and simulation research are carried out by using the ADRC method. The gyroscope stabilized platform is in the low-speed working environment in most cases, and the friction interference is especially serious in this environment, so this paper does not consider the influence of gyro noise and other interference factors on the control system. The friction disturbance and the model error of the system are reduced to the total disturbance of the system by using active disturbance rejection control, and the total disturbance is estimated in real time, and the control quantity is dynamically compensated to improve the control performance of the closed-loop system. The simulation results show that the ADRC system has the advantages of fast response speed, strong anti-jamming ability and high steady-state precision. The innovation of this paper is to improve the nonlinear function fal () used in traditional ADRC to smooth continuous function bas (), in the whole real number domain. The improved ADRC is applied to the airborne gyroscope stabilized platform system.
【学位授予单位】:长春理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273
【参考文献】
相关期刊论文 前10条
1 李殿起;段勇;;用跟踪微分器实现机器人自抗扰控制[J];兵工学报;2016年09期
2 焦姣姣;张兴华;;永磁同步电机调速系统的自抗扰控制器设计[J];微电机;2015年11期
3 魏伟;戴明;李嘉全;毛大鹏;柏旭光;孙敬辉;;航空光电稳定平台的自抗扰控制系统[J];光学精密工程;2015年08期
4 董存会;练星;武晓辉;;线性跟踪微分器跟踪干扰信号的研究[J];纺织高校基础科学学报;2014年04期
5 瞿永飞;丛爽;;陀螺稳定平台速度环的离散自抗扰控制[J];电子技术;2014年06期
6 朱倚娴;陆源;许江宁;程向红;;一种陀螺稳定平台自适应模糊-PID复合控制方法[J];中国惯性技术学报;2014年03期
7 刘思超;;陀螺稳定平台振动漂移性能研究[J];战术导弹技术;2014年02期
8 刘希;孙秀霞;郝震;刘宇坤;;最速跟踪微分器的一种新型离散形式[J];信息与控制;2013年06期
9 徐琦;孙明玮;陈增强;张德贤;;内模控制框架下时延系统扩张状态观测器参数整定[J];控制理论与应用;2013年12期
10 吴丹;赵彤;陈恳;;快速刀具伺服系统自抗扰控制的研究与实践[J];控制理论与应用;2013年12期
相关博士学位论文 前2条
1 丁策;机载光电稳定平台的分数阶控制研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
2 黄浦;自抗扰控制技术在航空相机镜筒控制系统中的应用研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2011年
相关硕士学位论文 前6条
1 舒骏逸;两轴四框架稳定跟踪平台伺服控制系统的设计与实现[D];北京理工大学;2016年
2 吕明月;风力发电变桨距自抗扰控制技术研究及其参数整定[D];燕山大学;2015年
3 初e,
本文编号:2372865
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2372865.html