基于在线辨识与优化的自适应PID控制算法的工程实现
[Abstract]:With climate change, environmental problems become increasingly prominent, and the task of "returning a blue sky to a city" is becoming increasingly serious. In order to meet the goal of saving energy and reducing energy consumption, thermal process control in thermal power plants is becoming more and more demanding. In the face of increasingly complex control systems, how to achieve stable, accurate and fast control has become one of the hot research topics. On-line identification uses real-time data to update the model of the controlled object, so as to facilitate the control operation which is more in line with the field operation conditions. For many systems with time-varying, large delay and high coupling degree, simple PID can not fully meet the control quality requirements. Therefore, adaptive PID control is implemented through an object model based on real-time data. It is of great significance to improve the control effect of the system. This method can identify and adjust the controller parameters on line, and has the advantages of simple structure, stability and reliability. For the purpose of engineering application, an adaptive PID control algorithm based on online identification and optimization is studied in this paper. Firstly, the principle and relation of different adaptive control methods are introduced and simulated. Then, the common models of system identification and their basic identification methods are introduced. The simulation results show that particle swarm optimization algorithm is feasible in engineering. In this paper, an idea of on-line identification is proposed. The model transfer function of water injection amount to the main steam temperature is identified under different loads, and the relationship between the model parameters and the controller parameters is obtained by selecting the data in accordance with the requirements. The adaptive PID control algorithm based on on-line identification and optimization is constructed by modifying the controller parameters automatically. The simulation results show that the algorithm is feasible. Finally, Siemens SIMATIC S7-300 PLC is used to realize the control algorithm.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273
【参考文献】
相关期刊论文 前10条
1 韩璞;于浩;曹喜果;孙明;;基于经验整定公式的自适应PID控制算法研究[J];计算机仿真;2015年03期
2 韩璞;袁世通;;基于大数据和双量子粒子群算法的多变量系统辨识[J];中国电机工程学报;2014年32期
3 赵海森;杜中兰;刘晓芳;王庆;;基于递推最小二乘法与模型参考自适应法的鼠笼式异步电机转子电阻在线辨识方法[J];中国电机工程学报;2014年30期
4 袁世通;韩璞;孙明;;基于大数据的多变量系统建模方法研究[J];系统仿真学报;2014年07期
5 韩璞;袁世通;张金营;;超超临界锅炉主汽温控制系统的建模研究[J];计算机仿真;2013年12期
6 刘毅;金福江;高增梁;;时变过程在线辨识的即时递推核学习方法研究[J];自动化学报;2013年05期
7 董泽;丁方;桑士杰;;基于PSO算法的1000MW机组主汽温系统辨识[J];电力科学与工程;2012年12期
8 傅篱;;我国先进控制技术应用中的问题与对策[J];科技创业月刊;2011年16期
9 黄宇;韩璞;刘长良;李永玲;;改进量子粒子群算法及其在系统辨识中的应用[J];中国电机工程学报;2011年20期
10 韩璞;吕玲;张倩;董泽;;基于经验整定公式的热工系统控制器参数智能优化[J];华北电力大学学报(自然科学版);2010年05期
相关博士学位论文 前4条
1 袁世通;1000MW超超临界机组建模理论与方法的研究[D];华北电力大学;2015年
2 杨武;时变结构模态参数的时域辨识方法及在线辨识技术研究[D];北京理工大学;2015年
3 任燕燕;基于智能计算的非线性系统辨识算法研究及其应用[D];华北电力大学;2014年
4 王维博;粒子群优化算法研究及其应用[D];西南交通大学;2012年
相关硕士学位论文 前5条
1 陈林海;基于控制历史的自适应PID控制方法及其在热工过程中的应用[D];重庆大学;2013年
2 孔学森;模糊自适应PID对三容水箱液位控制的仿真与试验研究[D];燕山大学;2012年
3 张学燕;神经网络自适应PID控制器的研究与仿真[D];贵州大学;2008年
4 张磊;时滞系统的辨识与控制[D];北京化工大学;2007年
5 喻娅娅;控制系统在线闭环辨识与性能评价方法的研究[D];华北电力大学(河北);2005年
,本文编号:2376172
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2376172.html