基于相似日搜索的改进LMD与ESN相结合的短期电力负荷预测模型
发布时间:2019-02-17 10:17
【摘要】:短期电力负荷容易受到自然因素及社会因素的影响,这使得负荷预测比较困难.为了提高短期负荷的预测精度,提出了基于相似日搜索的改进局部均值分解(ILMD)和回声状态网络(ESN)相结合的短期电力负荷预测模型.首先用模糊聚类分析将与预测日最相似的多个日期筛选出来.然后把这些相似日的整点负荷数据按照时间先后排成一组数据序列,用改进的LMD进行分解,对分解出的各个分量分别建立一个ESN网络,对每一个网络分别训练并进行预测.最后把每个网络的预测结果累加起来就是最终的预测值.实验证明此方法能有效提高预测精度.
[Abstract]:Short-term power load is easily affected by natural and social factors, which makes load forecasting more difficult. In order to improve the accuracy of short-term load forecasting, a short-term load forecasting model based on similarity day search based on improved local mean decomposition (ILMD) and echo state network (ESN) is proposed. Firstly, fuzzy clustering analysis is used to screen out the most similar dates to the predicted date. Then the load data of these similar days are arranged into a set of data sequence according to the time sequence, then decomposed by improved LMD, each component is decomposed into a ESN network, and each network is trained and predicted separately. Finally, the sum of the forecast results of each network is the final prediction value. Experiments show that this method can effectively improve the prediction accuracy.
【作者单位】: 河南省电力勘测设计院;郑州大学电气工程学院;河南省工程咨询公司;
【基金】:河南省青年骨干教师项目(2015GGJS-148) 河南省产学研合作项目(152107000058) 河南省重点科技攻关项目(152102210036)
【分类号】:TP183;TM715
本文编号:2425064
[Abstract]:Short-term power load is easily affected by natural and social factors, which makes load forecasting more difficult. In order to improve the accuracy of short-term load forecasting, a short-term load forecasting model based on similarity day search based on improved local mean decomposition (ILMD) and echo state network (ESN) is proposed. Firstly, fuzzy clustering analysis is used to screen out the most similar dates to the predicted date. Then the load data of these similar days are arranged into a set of data sequence according to the time sequence, then decomposed by improved LMD, each component is decomposed into a ESN network, and each network is trained and predicted separately. Finally, the sum of the forecast results of each network is the final prediction value. Experiments show that this method can effectively improve the prediction accuracy.
【作者单位】: 河南省电力勘测设计院;郑州大学电气工程学院;河南省工程咨询公司;
【基金】:河南省青年骨干教师项目(2015GGJS-148) 河南省产学研合作项目(152107000058) 河南省重点科技攻关项目(152102210036)
【分类号】:TP183;TM715
【相似文献】
相关期刊论文 前2条
1 杨博;程振波;邓志东;;面向匹配决策问题的漏整合神经元稀疏ESN网络[J];北京科技大学学报;2012年01期
2 ;[J];;年期
相关硕士学位论文 前3条
1 李莎莎;基于数据分解和ESN网络的短期电力负荷预测模型[D];郑州大学;2015年
2 陈颖;基于ESN的无线传感网络位置指纹定位方法研究[D];兰州交通大学;2016年
3 于永兵;基于改进ESN的混沌时间序列预测方法的研究[D];辽宁科技大学;2012年
,本文编号:2425064
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2425064.html