室内移动机器人定位技术研究
[Abstract]:Positioning is the key to solve all kinds of complex tasks of autonomous mobile robot, and it has important theoretical significance and application value to improve robot automation level. Robot localization methods are divided into two main categories: relative positioning and absolute positioning. Relative positioning refers to the robot getting its own position information through the sensor when the initial position is known, and absolute positioning is to determine its position through the sensor when the initial position is unknown. The main contents of this paper are as follows: firstly, this paper introduces the basic module of robot positioning, the basic methods of image processing and other preparatory knowledge, gives the establishment and transformation of robot coordinate system, the kinematics model and control algorithm of robot. Secondly, this paper studies and analyzes the robot model and positioning algorithm of the relative location method, builds a mobile robot platform with zero turning radius, and adds the electromagnetic compass module to the direction information of the robot. At the same time, Kalman filter algorithm is introduced to make the angle of electromagnetic compass accurate to-1 掳, which provides more reliable and stable course information for mobile robot. It lays a foundation for accurate positioning of indoor mobile robot based on encoder and electromagnetic compass. At the same time, zero-radius turning makes the robot avoid obstacles in the process of motion without introducing additional errors. The rationality of the positioning system is further explained. Thirdly, in absolute positioning, according to the existing resources and the precision requirements of indoor positioning, a global positioning system based on computer vision is proposed, and a global vision positioning platform based on 156cm 脳 117cm is built. After a series of image processing, the image coordinates of the two color marks on the top of the mobile robot are obtained through a series of image processing, which is fixed directly above the platform by a third angle camera. Then according to the two reference points known to the image coordinates and the world coordinates, the world coordinates of the robot on the experimental platform are calculated, and the position and pose information of the robot is obtained, so that the position and orientation of the robot can be completed. The results show that the global positioning accuracy of vision reaches centimeter level, which accords with the requirements of indoor mobile robot for positioning accuracy. Finally, a kind of mobile robot upper computer-indoor mobile robot upper computer system is designed and implemented. For the positioning method based on encoder and electromagnetic compass, the upper computer receives the data of the robot in real time, analyzes the position information of the robot, and displays it in the coordinate system. For the global positioning of vision, the upper computer displays the camera window and the binary graph after processing in real time, and samples the pictures regularly to get the position and pose information of the robot, and displays the motion track on the coordinate system. At the same time, the position and pose information is displayed in the data transmitting area according to the wireless protocol, and it is transmitted to the robot through the excellent wireless module APC220 to guide it to move toward the target.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 周艳聪;董永峰;王安娜;顾军华;;新的室内移动机器人自定位方法[J];计算机应用;2015年02期
2 杨小亮;叶阿勇;凌远景;;基于阈值分类及信号强度加权的室内定位算法[J];计算机应用;2013年10期
3 夏梁盛;严卫生;;基于栅格法的移动机器人运动规划研究[J];计算机仿真;2012年12期
4 曾健平;王保同;谢海情;;自主移动机器人定位系统中Kalman滤波算法改进[J];计算机应用研究;2011年05期
5 王殿君;兰云峰;任福君;赵丽杰;姜永成;;基于有源RFID的室内移动机器人定位系统[J];清华大学学报(自然科学版);2010年05期
6 禹建丽;张宗伟;;自主移动服务机器人的研究现状浅析[J];中原工学院学报;2008年04期
7 潘良晨;陈卫东;;室内移动机器人的视觉定位方法研究[J];机器人;2006年05期
8 王景川,陈卫东,曹其新;基于全景视觉与里程计的移动机器人自定位方法研究[J];机器人;2005年01期
9 李瑞峰,李伟招;基于多传感器信息融合的移动机器人路径规划[J];机电一体化;2002年04期
10 徐国华,谭民;移动机器人的发展现状及其趋势[J];机器人技术与应用;2001年03期
相关博士学位论文 前4条
1 邵暖;基于双目视觉的多机器人系统协调跟踪控制研究[D];燕山大学;2015年
2 张琦;移动机器人的路径规划与定位技术研究[D];哈尔滨工业大学;2014年
3 王勇;移动机器人的定位能力估计及定位[D];上海交通大学;2014年
4 严勇杰;多机器人系统协调与控制研究[D];哈尔滨工程大学;2007年
相关硕士学位论文 前10条
1 魏豪左;基于深度视觉的室内移动机器人SLAM算法研究[D];兰州理工大学;2016年
2 吴显;基于多传感器信息融合的移动机器人定位方法研究[D];北京交通大学;2016年
3 王安娜;室内移动机器人自定位方法的研究[D];河北工业大学;2015年
4 冯俊杰;多机器人系统避障与最优协调[D];广西大学;2014年
5 周伦;室内移动机器人超声波网络定位方法研究[D];哈尔滨工业大学;2013年
6 张哲;基于局部特征的室内移动机器人物体识别算法研究[D];武汉理工大学;2013年
7 刘奇;室内轮式移动机器人系统设计[D];哈尔滨工业大学;2012年
8 徐胜生;室内服务机器人定位与导航的研究和实现[D];合肥工业大学;2012年
9 包闰贵;室内机器人超声测距和定位算法的研究[D];安徽大学;2011年
10 胡超;足球机器人协调控制系统研究[D];中国科学技术大学;2010年
,本文编号:2430439
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2430439.html