当前位置:主页 > 科技论文 > 自动化论文 >

一种新型仿生机器海豚的设计

发布时间:2019-03-16 11:12
【摘要】:随着人类对于海洋生命的不断探索,以及当今社会上各领域里机器人技术的广泛应用,机器人可以在很多复杂环境中完成指定任务,许多人和工具无法做到的动作,机器人可以轻松完成。本文基于现代仿生学、机械设计、流体力学等领域设计了一台仿生机器海豚,机器海豚以海洋中的宽吻海豚为参照,可以模仿真实海豚游动方式。设计的机器海豚可以在复杂海域进行长时间的巡航,依靠自身携带的各种传感器和摄像头可以对周围环境进行实时监测,还可以发出超声波引导鱼群迁徙,经过改装的机器海豚可以携带鱼雷进行军事侦察反潜。本文针对多用途的仿生机器海豚稳定性和仿生性的要求,研究和设计了仿生机器海豚的机械结构,主要研究内容如下:(1)本文设计的机器海豚以大自然中的宽吻海豚为仿生对象,参照海豚的湽科加月牙尾的推进模式,采用模块化的设计思想设计了机器海豚的各部分功能机构,总共分为头部机构、尾部正弦推进机构、重心调节机构、胸鳍机构、尾部辅助机构五部分,模块化的设计思想有助于后续的结构改进优化。(2)利用ADAMAS软件对尾部的正弦推进机构进行运动学仿真以及优化,求得关键部位曲轴受力情况以及尾鳍摆动的位移、速度、加速度,得到了类似于正弦曲线的尾鳍摆动速度曲线,从而验证了机器海豚的背腹式运动特点,并对正弦推进机构进行了优化,优化后可使正弦推进机构推进效率最大。(3)最后选取对机构运动动态特性影响最大的主要部件曲轴进行安全特性检验。曲轴的失效不但会使系统无法正常工作,还可能引起严重的事故。据统计,百分之七十的曲轴失效是由于弯曲疲劳所导致的。本文根据机器海豚工作情况,计算出最大剪切阻力,考虑到曲轴复杂的形状以及工况,利用ANSYS软件对曲轴进行了强度校核,得到位移云图、应力分布云图。考虑到运动过程中电机转动对曲轴的影响,从避免共振的角度分析了机器海豚重要部件曲轴,在静力学分析的基础上对其进行模态分析,得到位移云图、应力分布云图、固有频率和振型,确定其易受影响的频率范围。
[Abstract]:With the constant exploration of marine life and the wide application of robotics in various fields of society today, robots can perform specific tasks in many complex environments, and many people and tools cannot do so. Robots can be easily done. In this paper, a bionic robot dolphin is designed based on modern bionics, mechanical design, fluid mechanics and other fields. The robot dolphin can imitate the swimming mode of real dolphin according to the dolphin in the ocean. Designed for long periods of time in complex waters, robotic dolphins rely on their sensors and cameras to monitor their surroundings in real time, and to send out ultrasound to guide fish flocks to migrate. Modified robotic dolphins can carry torpedoes for military reconnaissance anti-submarine. According to the requirements of stability and bionics of multi-purpose bionic robot dolphin, the mechanical structure of bionic robot dolphin is studied and designed in this paper. The main contents of the study are as follows: (1) the robot dolphin designed in this paper takes the dolphin in nature as the biomimetic object, referring to the propulsive mode of dolphin's family and crescent tail. The functional mechanism of the robot dolphin is designed by using the modular design idea, which is divided into five parts: the head mechanism, the tail sine propulsion mechanism, the center of gravity adjustment mechanism, the pectoral fin mechanism, and the tail auxiliary mechanism. The modular design idea is helpful to the following structure improvement and optimization. (2) the kinematics simulation and optimization of the tail sine propulsion mechanism are carried out by using ADAMAS software, and the force condition of the crankshaft at the key position and the displacement and velocity of the tail fin swing are obtained. Acceleration, the velocity curve of tail fin swinging similar to sine curve is obtained, which verifies the characteristics of dolphin's back-abdomen motion, and optimizes the sine propulsion mechanism. After optimization, the propulsion efficiency of the sine propulsion mechanism can be maximized. (3) the crankshaft, which has the greatest influence on the dynamic characteristics of the mechanism, is selected to test the safety characteristics of the crankshaft. The failure of crankshaft will not only make the system not work properly, but also cause serious accidents. According to statistics, 70% of crankshaft failure is due to bending fatigue. According to the working condition of the dolphin, the maximum shear resistance is calculated in this paper. Considering the complicated shape and working condition of the crankshaft, the strength check of the crankshaft is carried out by using ANSYS software, and the displacement cloud diagram and the stress distribution cloud diagram are obtained. Considering the influence of motor rotation on crankshaft in the course of motion, the crankshaft, an important part of machine dolphin, is analyzed from the angle of avoiding resonance. The modal analysis is carried out on the basis of statics analysis, and the displacement cloud diagram and stress distribution cloud diagram are obtained. Natural frequency and mode shape to determine its vulnerable frequency range.
【学位授予单位】:深圳大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前10条

1 张磊;孟中杰;;基于尾鳍推进模型的三关节仿生机器海豚系统[J];兵工自动化;2016年12期

2 商延赓;金娥;可庆朋;韩亚民;高志桦;田丽梅;;仿海豚皮肤结构的功能表面提高离心泵效率[J];农业工程学报;2016年07期

3 杜如虚;钟勇;陈贤帅;李峥;;基于拉线机构的机器鱼运动控制仿真研究[J];江苏科技大学学报(自然科学版);2014年05期

4 陈进;马金成;汪泉;郭小锋;李松林;;基于ANSYS二次开发的风力机叶片结构优化[J];哈尔滨工程大学学报;2014年07期

5 周腊吾;徐超;胡雪婷;苏清杰;侯绍虎;汤辉;;基于Pro/E和ANSYS的发电机转子横截面的应力分析[J];湖南大学学报(自然科学版);2013年04期

6 赵丽媛;陶翠花;许敏;祝茜;;中华白海豚SRAP分子标记多态性的初步研究[J];台湾海峡;2012年02期

7 于苏民;;平面机构自由度计算中常见错误分析[J];科技信息;2011年26期

8 汤修映;肖丹;刘岭;刘川;毛恩荣;;ADAMS、Pro/E和ANSYS间数据的自动传输技术[J];农业机械学报;2011年06期

9 王扬威;王振龙;李健;;仿生机器鱼研究进展及发展趋势[J];机械设计与研究;2011年02期

10 袁国勇;;ANSYS网格划分方法的分析[J];现代机械;2009年06期



本文编号:2441216

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2441216.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f7628***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com