基于回溯式搜索算法的随机神经网络优化及应用
[Abstract]:In the development history of neural network, BP algorithm (Error Back Propagation, BP error back propagation has been used as the mainstream method of neural network weight optimization. However, its convergence speed is slow and it is easy to fall into local minima, which reduces the performance of neural network. The stochastic neural network adopts a single implicit layer structure, the parameters of the hidden layer (from the input node to the hidden node) are randomly generated, and the parameters of the output layer (from the hidden node to the output node) are obtained by calculation. Compared with the neural network with BP algorithm, the learning speed of stochastic neural network is improved by hundreds of times, and the accuracy and generalization ability of the network model are also improved. The randomness strategy of hidden layer parameters improves the network performance, but this mechanism leads to the need of too many nodes in the hidden layer. This causes the network structure to be too bloated and reduces the test speed. Many scholars have studied this in order to simplify the network structure, and using evolutionary algorithm to optimize the hidden layer parameters of stochastic neural networks is one of them. Evolutionary algorithm is a heuristic search algorithm based on natural selection and biological heredity and other biological evolution mechanisms. Evolutionary algorithm includes four parts: genetic algorithm [2], genetic coding, evolutionary strategy and evolutionary programming. Evolutionary algorithm has strong global search ability. Therefore, this paper attempts to optimize the parameters of stochastic neural network by retrospective search algorithm (one of evolutionary algorithm) in order to improve the efficiency of stochastic neural network and simplify the neural network structure. The solution process of traceability search algorithm is a greedy process. When the backtracking search algorithm is used to optimize the stochastic neural network iteratively, the model tends to fit the verification set, but the performance on the test set may even decline. Therefore, in this paper, a loss function with binomial constraints is proposed, which greatly reduces the problem that the model tends to fit the verification set through the data constraints. Generalization ability is an important index in the evaluation of network model. In this paper, a new evaluation criterion of generalization ability is proposed, which can show the generalization ability of the model more intuitively. Many diseases such as diabetes, glaucoma and other early symptoms are manifested in the retinal. Retinal analysis can be used for early prevention and treatment of these diseases. Retinal vascular segmentation is the basis of retinal analysis. In vascular segmentation, the accuracy of retinal analysis is directly affected by the accuracy of vascular bending and branch segmentation. In this paper, the improved stochastic neural network model of retrospective search algorithm is applied to retinal vascular segmentation, and satisfactory results are obtained. On UCI dataset and retinal vascular segmentation data set, the improved stochastic neural network model based on traceability search algorithm has achieved satisfactory results. In this paper, the model of optimizing stochastic neural network based on traceability search algorithm is widely explored, but there are still some problems to be further verified by experiments and theoretical analysis.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP183
【相似文献】
相关期刊论文 前10条
1 YanJill;;搜索算法纵横[J];中文信息;2002年08期
2 孙吉贵,何雨果;量子搜索算法[J];软件学报;2003年03期
3 孙力;须文波;;量子搜索算法体系及其应用[J];计算机工程与应用;2006年14期
4 耿汝年;须文波;魏士靖;刘国玲;;无信息图搜索算法的改进研究[J];山东轻工业学院学报(自然科学版);2006年02期
5 徐丰民;陈启兴;;电视节目自动跳跃搜索算法[J];现代电子技术;2007年04期
6 詹志辉;胡晓敏;张军;;通过八数码问题比较搜索算法的性能[J];计算机工程与设计;2007年11期
7 文家焱;王国利;;绝热量子搜索算法中的纠缠与能量分析[J];计算机研究与发展;2008年S1期
8 周日贵;;多模式部分量子搜索算法[J];西南交通大学学报;2008年04期
9 钟普查;鲍皖苏;隗云;;改进的多目标元素量子搜索算法[J];计算机工程与应用;2009年18期
10 王常春;李贵艳;向淑文;;搜索算法在囚徒困境中的应用[J];遵义师范学院学报;2009年04期
相关会议论文 前10条
1 张玲;姜立志;;能量抵消测量相位中的相位搜索算法[A];2009年全国水声学学术交流暨水声学分会换届改选会议论文集[C];2009年
2 李金;蒋国平;;一种改进的复杂网络搜索算法[A];2007中国控制与决策学术年会论文集[C];2007年
3 罗家祥;唐立新;李小林;刘建荣;邬成新;;分散搜索算法在板坯匹配优化问题中的应用研究[A];全国冶金自动化信息网2009年会论文集[C];2009年
4 李潇磊;伍瑞卿;朱维乐;;运动搜索算法的比较与改进[A];2007北京地区高校研究生学术交流会通信与信息技术会议论文集(上册)[C];2008年
5 程振波;邓志东;;优化策略模型下的匹配律算法[A];2009年中国智能自动化会议论文集(第五分册)[东南大学学报(增刊)][C];2009年
6 彭明侨;罗先觉;邹晓松;;基于改进概率搜索算法的模拟电路故障诊断[A];第四届中国测试学术会议论文集[C];2006年
7 常新杰;李言俊;;搜索算法的研究进展[A];1998年中国智能自动化学术会议论文集(上册)[C];1998年
8 糜玉林;左斌;;基于协同控制的极值搜索算法与控制器一体化设计[A];2007年中国智能自动化会议论文集[C];2007年
9 钟普查;鲍皖苏;;基于相位变换的量子搜索算法研究[A];第十三届全国量子光学学术报告会论文摘要集[C];2008年
10 罗春华;张继勇;郑方;徐明星;;一种基于HTK的词图搜索算法[A];第六届全国人机语音通讯学术会议论文集[C];2001年
相关博士学位论文 前9条
1 朱皖宁;离散量子行走研究[D];东南大学;2015年
2 孙杰;基于绝热演化的量子搜索算法研究[D];华中科技大学;2013年
3 张映玉;绝热量子搜索算法研究[D];华中科技大学;2011年
4 阎兴,
本文编号:2499573
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2499573.html