人工蜂群算法研究及其在车辆路径问题的应用
[Abstract]:At present, the optimization problems in engineering are becoming more and more difficult, and the traditional solutions can not solve these problems efficiently. The common phenomena in life, such as the predation behavior of birds, the ability of ants to find sweets in remote corners and the construction of the most magical buildings in the world by bees with simple minds, are all swarm intelligence shown by simple creatures. Human beings get inspiration from them and propose swarm intelligence algorithm. Artificial bee swarm algorithm is one of them. Once the algorithm is proposed, because its structure is simple and easy to implement, and its performance is superior, more and more researchers have studied it. Although the artificial bee swarm algorithm is excellent, it has many shortcomings, that is, the convergence speed is slow. In this paper, an artificial beehive algorithm (ABCLGII). Based on local and global information interaction is proposed by analyzing the reasons for its slow convergence and improving the analysis results. In this paper, the research background and development of artificial beehive algorithm are described, then the shortcomings of artificial beehive algorithm are analyzed, and the ABCLGII algorithm is designed. Then, the effectiveness of ABCLGII algorithm is verified by its application in numerical optimization problem and vehicle routing problem. The main work of this paper is as follows: 1) in this paper, the shortcomings of artificial beehive algorithm are analyzed, and an artificial beehive algorithm (ABCLGII). Based on local and global information exchange is designed. The main innovation of the algorithm is to enhance the information interaction among the same kind of bees, and make full use of the information of excellent individuals to guide the search of the population. ABCLGII realizes the above mechanism through three novel search formulas and an adaptive selection strategy, which makes the bee colony change from blind and independent search to directional cooperative search, which improves the global convergence speed of the population. Thus, the search performance of the algorithm is improved. By comparing the data of ABCLGII with other algorithms in 22 standard test functions, it is verified that the ABCLGII algorithm has some advantages. 2) in this paper, the improved artificial bee swarm algorithm is applied to the vehicle routing problem. By discretizing the individual vector of the population, an individual represents a path, and then the ABCLGII algorithm is used for continuous iterative evolution to find the optimal vehicle path with the lowest transportation cost. By comparing the running data of ABC, genetic algorithm and ABCLGII algorithm, the advantages of ABCLGII algorithm in practical application are verified.
【学位授予单位】:深圳大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18
【相似文献】
相关期刊论文 前10条
1 唐加福;孔媛;潘震东;董颖;;基于划分的蚁群算法求解货物权重车辆路径问题[J];控制理论与应用;2008年04期
2 钟雪灵;王雄志;;开放式车辆路径问题的混合算法[J];计算机仿真;2011年08期
3 熊浩;符卓;鄢慧丽;;动态车辆路径问题的隐分区灵活分批策略[J];同济大学学报(自然科学版);2013年05期
4 娄山佐;吴耀华;肖际伟;廖莉;;基于增强学习解决随机需求车辆路径问题[J];系统仿真学报;2008年14期
5 徐俊杰;;车辆路径问题的改进微正则退火算法[J];信息化纵横;2009年06期
6 吴斌;邵建峰;方叶祥;;基于客户满意度的开放式车辆路径问题研究[J];计算机工程;2009年17期
7 王江晴;张潇;;复杂环境下动态车辆路径问题的建模与求解[J];武汉大学学报(理学版);2010年04期
8 陆琳;蔡绍洪;;一类随机顾客车辆路径问题及其算法[J];南京航空航天大学学报;2010年04期
9 温惠英;孙博;;协同车辆路径问题的模糊规划模型和算法[J];计算机应用研究;2011年02期
10 杨皎平;高雷阜;王俊;;装卸联盟车辆路径问题及两阶段优化方法[J];计算机工程与应用;2011年14期
相关会议论文 前10条
1 符卓;陈斯卫;;车辆路径问题的研究现状与发展趋势[A];中国运筹学会第七届学术交流会论文集(下卷)[C];2004年
2 杨世坚;陈韬;;随机车辆路径问题研究综述[A];中国系统工程学会决策科学专业委员会第六届学术年会论文集[C];2005年
3 李桂平;陈楠;;多中心车辆路径问题的解决思路[A];中国地理信息系统协会第四次会员代表大会暨第十一届年会论文集[C];2007年
4 李大卫;王梦光;;广义车辆路径问题——模型及算法[A];1997中国控制与决策学术年会论文集[C];1997年
5 符卓;聂靖;;开放式车辆路径问题及其若干研究进展[A];中国运筹学会第八届学术交流会论文集[C];2006年
6 陈宝文;宋申民;陈兴林;单志众;;应用于车辆路径问题的多蚁群算法[A];第25届中国控制会议论文集(下册)[C];2006年
7 戎丽霞;;模糊需求条件下的多车场车辆路径问题[A];第三届中国智能计算大会论文集[C];2009年
8 张凤姣;张兴芳;;基于不确定理论的车辆路径问题[A];第九届中国不确定系统年会、第五届中国智能计算大会、第十三届中国青年信息与管理学者大会论文集[C];2011年
9 肖雁;符卓;李育安;;带软时间窗的车辆路径问题及其应用前景探讨[A];中国运筹学会第六届学术交流会论文集(下卷)[C];2000年
10 许鑫;范文慧;冯雅U,
本文编号:2502782
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2502782.html