当前位置:主页 > 科技论文 > 自动化论文 >

电动车自适应巡航控制方法研究

发布时间:2019-06-26 15:13
【摘要】:随着全球经济和汽车电子技术的迅猛发展,汽车的产销量急剧增加,但是这也带来了交通拥堵、交通事故频发、环境污染严重以及能源消耗量急剧增加等一系列社会问题。为了解决以上社会问题,电动车以及车辆的主动安全技术成为当今汽车技术的发展方向。自适应巡航控制(Adaptive Cruise Control,ACC)作为安全辅助驾驶技术,是车辆主动安全技术的一个重要组成部分,已成为国内外研究的热点。然而关于自适应巡航系统的研究目前多集中于燃油车,对电动车的研究较少。又因为自适应巡航系统的研究方法也随着车辆动力系统的变化而变化,因此本文对基于电动车的自适应巡航系统的研究有较大的实际意义与价值。本文采用分工况、分层的策略对电动车的自适应巡航系统进行控制算法研究。将控制系统分为决策层与执行层:根据ACC车辆的行车环境,将决策层分为跟踪控制、速度控制和匀速控制三种模式;执行层分别设计驱动控制器和制动控制器,实现对决策层输出的期望加速度的跟踪控制。首先,本文建立了决策层跟踪控制模式下的控制对象模型。跟踪控制模式主要实现ACC车辆与目标车辆的实际车间距对期望安全车间距的跟踪。首先选择两车期望安全间距的规划策略,完成ACC车辆与目标车辆之间安全车间距的规划;当车辆进入弯道行驶时,需要将雷达获得的两车径向相对运动状态信息转换为两车的纵向相对运动信息,进而对ACC车辆进行纵向控制;最后仅考虑ACC系统的纵向控制,结合ACC车辆与目标车辆之间的纵向运动学特性与规划的期望安全车间距,建立两车车间距误差LPV模型。其次,设计了ACC系统决策层控制策略,包含ACC车辆在不同工况下的控制模式以及在各个控制模式下控制器的切换策略,实现控制器的平滑切换。在跟踪控制模式下,由于已建立的车间距误差LPV模型的参变量可测并且有界,故可使用H?控制算法设计间距控制器。针对速度控制模式,使用PID控制算法设计速度巡航控制器,实现对驾驶员设定速度的跟踪。最后,建立了执行层的驱动控制器和制动控制器,实现对决策层输出的期望加速度的跟踪。由于电动车可以实现对车轮扭矩的精确控制,故可通过车轮扭矩来控制车辆的驱动和制动过程。在建立ACC车辆的纵向驱动动力学模型和制动动力学模型时,考虑车辆滑移率以及前后轴载荷转移的影响,并由于该模型的强非线性,可使用滑模控制算法设计驱动控制器和制动控制器。在目标车辆减速、目标车辆先减速后加速、目标车辆急刹车、相邻车道车辆插入等工况下,用高精度仿真软件veDYNA对由决策层与执行层的控制器组成的ACC系统进行仿真验证。仿真结果表明,设计的ACC算法控制效果良好,具有较强的鲁棒性。
[Abstract]:With the rapid development of global economy and automobile electronic technology, the production and sales of cars have increased sharply, but this has also brought a series of social problems, such as traffic congestion, frequent traffic accidents, serious environmental pollution and a sharp increase in energy consumption. In order to solve the above social problems, electric vehicles and vehicle active safety technology has become the development direction of automobile technology. Adaptive cruise control (Adaptive Cruise Control,ACC), as a safety auxiliary driving technology, is an important part of vehicle active safety technology, and has become a hot research topic at home and abroad. However, the research on adaptive cruise system is mostly focused on fuel vehicles, but the research on electric vehicles is less. Because the research method of adaptive cruise system also changes with the change of vehicle power system, the research of adaptive cruise system based on electric vehicle has great practical significance and value in this paper. In this paper, the control algorithm of adaptive cruise system of electric vehicle is studied by using the strategy of dividing working conditions and layering. The control system is divided into decision layer and execution layer: according to the driving environment of ACC vehicle, the decision layer is divided into three modes: tracking control, speed control and uniform speed control, and the driving controller and braking controller are designed respectively to realize the tracking control of the expected acceleration of the output of the decision layer. Firstly, the control object model in decision layer tracking control mode is established in this paper. The tracking control mode mainly realizes the tracking of the actual workshop distance between the ACC vehicle and the target vehicle to the expected safety workshop distance. Firstly, the planning strategy of the expected safety distance between the two vehicles is selected to complete the planning of the safety workshop distance between the ACC vehicle and the target vehicle. When the vehicle enters the bend, the radial relative motion state information obtained by the radar needs to be transformed into the longitudinal relative motion information of the two vehicles, and then the longitudinal control of the ACC vehicle is carried out. Finally, considering only the longitudinal control of ACC system, combining the longitudinal kinematic characteristics between ACC vehicle and target vehicle and the planned expected safety workshop distance, the LPV model of two-car workshop distance error is established. Secondly, the decision layer control strategy of ACC system is designed, which includes the control mode of ACC vehicle under different working conditions and the switching strategy of controller under each control mode, so as to realize the smooth switching of the controller. In the tracking control mode, the parameters of the established workshop distance error LPV model can be measured and bounded, so H? The distance controller is designed by the control algorithm. Aiming at the speed control mode, the speed cruise controller is designed by using PID control algorithm to track the speed set by the driver. Finally, the driving controller and braking controller of the executive layer are established to track the expected acceleration of the output of the decision layer. Because the electric vehicle can realize the accurate control of the wheel torque, the driving and braking process of the vehicle can be controlled by the wheel torque. When establishing the longitudinal drive dynamics model and braking dynamics model of ACC vehicle, the influence of vehicle slip rate and front and rear axle load transfer is taken into account. Because of the strong nonlinear of the model, the sliding mode control algorithm can be used to design the drive controller and braking controller. Under the conditions of deceleration of the target vehicle, deceleration and acceleration of the target vehicle, brake of the target vehicle and insertion of the adjacent lane vehicle, the ACC system composed of the controller of the decision layer and the executive layer is simulated and verified by using the high precision simulation software veDYNA. The simulation results show that the designed ACC algorithm has good control effect and strong robustness.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U469.72;TP273

【参考文献】

相关期刊论文 前10条

1 王珏;;汽车主动安全技术及其发展方向[J];时代汽车;2017年06期

2 高振海;严伟;李红建;王大志;王林;;汽车自适应巡航线性参变间距控制算法[J];吉林大学学报(工学版);2016年04期

3 闫丹彤;何智成;陈东;谭纯;;电动汽车自适应巡航控制系统建模与仿真[J];计算机仿真;2016年01期

4 王楠;刘卫国;张君媛;童宝锋;;汽车ACC系统纵向控制六模式切换策略仿真研究[J];交通信息与安全;2014年04期

5 王明昊;刘刚;杨述华;;高超声速飞行器的多胞LPV系统控制器设计[J];空间控制技术与应用;2013年01期

6 裴晓飞;刘昭度;马国成;齐志权;;汽车自适应巡航系统的多模式切换控制[J];机械工程学报;2012年10期

7 裴晓飞;刘昭度;马国成;李径亮;;一种汽车巡航控制的分层控制算法[J];北京理工大学学报;2012年05期

8 裴晓飞;刘昭度;马国成;叶阳;;汽车主动避撞系统的安全距离模型和目标检测算法[J];汽车安全与节能学报;2012年01期

9 任殿波;张策;张继业;;考虑前后信息的车辆跟随自适应控制[J];哈尔滨工业大学学报;2011年06期

10 张德兆;王建强;刘佳熙;李克强;连小珉;;加速度连续型自适应巡航控制模式切换策略[J];清华大学学报(自然科学版);2010年08期

相关博士学位论文 前4条

1 严伟;仿驾驶员速度跟随行为的自适应巡航控制算法研究[D];吉林大学;2016年

2 张德兆;基于弯道行驶的车辆自适应巡航控制[D];清华大学;2011年

3 张磊;基于驾驶员特性自学习方法的车辆纵向驾驶辅助系统[D];清华大学;2009年

4 宾洋;车辆走停巡航系统的非线性控制研究[D];清华大学;2006年

相关硕士学位论文 前9条

1 成旺龙;轮毂电机驱动电动汽车自适应巡航控制算法的研究[D];吉林大学;2016年

2 张茜;智能车辆的轨迹跟踪控制方法研究[D];哈尔滨工业大学;2015年

3 杨斌;汽车发动机电子节气门滑模控制研究[D];重庆邮电大学;2015年

4 李肖含;汽车自适应巡航控制系统模糊控制策略研究[D];北京理工大学;2015年

5 张振军;纯电动汽车自适应巡航控制系统控制策略研究[D];吉林大学;2013年

6 尤洋;汽车自适应巡航系统自调整因子模糊控制器的优化设计[D];吉林大学;2012年

7 龚李龙;车辆自适应巡航控制系统的算法研究[D];浙江大学;2012年

8 甘志梅;基于激光雷达的Stop & Go巡航控制技术研究[D];上海交通大学;2009年

9 卢燕;城市工况汽车走—停巡航算法的研究[D];吉林大学;2007年



本文编号:2506280

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2506280.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7c4b3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com