基于多分类支持向量机的工业故障分类
[Abstract]:In this paper, the problem of fault classification in complex industrial process is studied. Nowadays, the industrial process has become more large-scale, complex and highly coupled. Any abnormal situation may be spread and magnified, resulting in unnecessary loss of property and casualties throughout the industrial production process. Therefore, the problem of fault classification in complex industrial processes is of great practical significance. So far, data-based fault detection and diagnosis methods have been well developed. For example, some multivariate statistical methods have been proposed, including principal component analysis (Principal Component Analysis,PCA), independent component analysis (Independent Component Analysis,ICA) and support vector machine (Support Vector Machine,SVM). In the classification of high-dimensional data, too many variables will lead to higher computational complexity. And the noise contained in the data will also reduce the accuracy of classification. Therefore, data dimension reduction is very important. At present, there have been many methods of data dimension reduction. For example, the dimensionality reduction methods of principal component analysis, kernel principal component analysis (Kernel Principal Component Analysis,KPCA), independent component analysis and partial least squares (Partial Least Squares,PLS) are used in this paper. In this paper, support vector machine (SVM) and principal component analysis support vector machine (Principal Component Analysis based Support Vector Machine,PCA-SVM) are used for fault classification. Because the dimension reduction of principal component analysis loses the classification accuracy, the kernel principal component analysis support vector machine (Kernel Principal Component Analysis based Support Vector Machine,KPCA-SVM) is used for fault classification to improve the classification accuracy. The kernel function is applied to the dimension reduction process of kernel principal component analysis, and the unknown parameters are introduced, which complicates the calculation process. In order to avoid this problem, independent component analysis support vector machine (Independent component analysis based support vector machine,ICA-SVM) is used for fault classification. It is found that the support vector machine based on principal component analysis and kernel principal component analysis has poor performance in fault classification caused by compound interference. Then, the partial least square support vector machine (Partial Least Squares based support vector machine,PLS-SVM) is used to classify this kind of faults. The traditional partial least square class coding method can not reflect the correlation between categories well, so the category coding method is improved, and the fault classification based on improved partial least square support vector machine method is proposed, and good classification effect is obtained.
【学位授予单位】:渤海大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP18
【相似文献】
相关期刊论文 前10条
1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期
2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期
3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期
4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期
5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期
6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期
7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期
8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期
9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期
10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期
相关会议论文 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:2507490
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2507490.html