当前位置:主页 > 科技论文 > 自动化论文 >

机器人手指光纤式压触觉传感器研究

发布时间:2019-07-04 12:10
【摘要】:机器人触觉感知技术对于机器人的智能化应用有着极为重要的意义,随着机器人工作环境的日趋复杂化,机器人在压触觉感知方面的性能要求也越来越高。光纤传感器因具有体积小、柔性好、灵敏度高、抗电磁干扰及成本低等方面优点,在压触觉传感器的微型化、柔性化和阵列化等方面更具有优势。将光纤传感应用到机器人手指压触觉检测是当前机器人触觉感知领域的研究热点之一。本文的主要研究内容及研究成果如下:1)通过对机器人手指触觉感知技术研究现状的检索和分析,发现现有的电子式压触觉传感器存在难柔性化和抗电磁干扰差等不足。针对这一情况,分析了光纤式压触觉传感器的优势和发展现状,结合光纤弯曲特性的传感机理,对光纤式压触觉传感器在机器人手指触觉方面的感知应用进行了相关研究。2)光纤的弯曲形变会对光纤的传输性能产生影响,通过分析弯曲结构对光纤的折射率、数值孔径和传输损耗等参数的影响,论证了光纤弯曲传感应用在手指压触觉感知方面的可行性,并将塑料光纤和石英光纤的传输性能进行了对比分析。3)结合机器人手指形状和光纤弯曲的性能参数,设计了两种光纤压触觉传感器,一种是基于单模光纤纯弯曲结构的压触觉传感器,另一种是基于塑料光纤弯曲和位移结构的压触觉传感器。使用多物理场分析软件COMSOL对光纤的弯曲和结构的受力情况进行仿真模拟,确定了两种压触觉传感器的最佳结构参数。设计了使用纯光纤检测机器人手指弯曲度的测试实验,最后对设计好的压触觉传感器进行柔性材料的封装和制作。4)针对压触觉传感器的解调原理,搭建了实验测试平台,对传感器的性能参数进行了静态实验标定。对机器人手指弯曲检测进行了简单的实验验证。实验结果表明,设计的两种压触觉传感器基本满足要求,其中塑料光纤压触觉传感器的检测范围为0-20N,灵敏度为0.839dBm/N,单模石英光纤压触觉传感器的检测范围为0-4N,灵敏度为0.125mW/N,两者的线性度和重复度都较好。手指弯曲度检测实验效果比较明显,能够检测的角度范围为0-90度,但表现出非线性。文章的最后进行了总结,分析了本文研究的不足,提出需要进一步改进的地方,为接下来的工作研究进行展望。
[Abstract]:Robot tactile sensing technology is of great significance to the intelligent application of robot. with the increasing complexity of robot working environment, the performance requirements of robot in pressure tactile perception are getting higher and higher. Because of its small size, good flexibility, high sensitivity, anti-electromagnetic interference and low cost, optical fiber sensor has more advantages in miniaturization, flexibility and array of pressure tactile sensor. The application of optical fiber sensing to robot finger pressure tactile detection is one of the research hotspots in the field of robot tactile perception. The main research contents and research results of this paper are as follows: 1) through the retrieval and analysis of the research status of robot finger tactile sensing technology, it is found that the existing electronic pressure tactile sensors have some shortcomings, such as difficult flexibility and poor anti-electromagnetic interference. In view of this situation, the advantages and development status of optical fiber pressure tactile sensor are analyzed, and the sensing application of optical fiber pressure tactile sensor in robot finger tactile sensing is studied according to the sensing mechanism of optical fiber bending characteristics. 2) the bending deformation of optical fiber will affect the transmission performance of optical fiber, and the influence of bending structure on refractive index, numerical aperture and transmission loss of optical fiber is analyzed. The feasibility of applying optical fiber bending sensor to finger compression tactile sensing is demonstrated, and the transmission performance of plastic optical fiber and quartz optical fiber is compared and analyzed. 3) combined with the performance parameters of robot finger shape and optical fiber bending, two kinds of optical fiber pressure tactile sensors are designed, one is based on single mode optical fiber pure bending structure. The other is a pressure tactile sensor based on plastic optical fiber bending and displacement structure. The bending and structural force of optical fiber are simulated by using multi-physical field analysis software COMSOL, and the optimum structural parameters of two kinds of pressure tactile sensors are determined. The test experiment of using pure optical fiber to detect the finger curvature of robot is designed. Finally, the designed pressure tactile sensor is packaged and fabricated by flexible material. 4) according to the demodulation principle of pressure tactile sensor, the experimental test platform is built, and the static experimental calibration of the performance parameters of the sensor is carried out. A simple experimental verification of robot finger bending detection is carried out. The experimental results show that the two kinds of pressure tactile sensors basically meet the requirements, in which the detection range of plastic optical fiber pressure tactile sensor is 0 鈮,

本文编号:2509905

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2509905.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8dffa***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com