智能水滴算法优化SVM的光伏最大功率跟踪研究
文内图片:
图片说明:光伏电池仿真模型
[Abstract]:The continuous exploitation and use of fossil energy has a serious impact on the ecological environment. In order to better protect the ecological environment of the earth, it is urgent to use green energy and renewable energy to achieve sustainable development. Solar energy is a kind of clean energy which is favored by people and has a broad development prospect. Photovoltaic power generation, as the main way to develop solar energy, has the advantages of safety and reliability, flexible application form, simple installation and maintenance, and so on. However, there are some problems in photovoltaic power generation, such as low power conversion rate and high cost. The maximum power tracking control algorithm (MPPT), which is widely used at present, is an important means to improve its conversion efficiency. Firstly, the research background, significance and methods and techniques of photovoltaic power generation output prediction are introduced. Then the output characteristics of photovoltaic cells are analyzed, and the necessity and importance of MPPT are introduced. Then, a new swarm intelligent algorithm, intelligent water drop algorithm (Intelligent Water Drops,IWD), is introduced, which is originally proposed for discrete optimization problem, and the optimization of SVM parameters is a continuous optimization problem. At the same time, the traditional intelligent water drop algorithm is prone to stagnation and blocking in node selection. In view of the above problems, the traditional intelligent water drop algorithm is improved, and then the improved intelligent water droplet algorithm is tested by using the traditional standard algorithm to optimize the test function, and the results are compared with the traditional ant colony algorithm and the standard intelligent water drop algorithm. The experimental results show that the improved intelligent algorithm proposed in this paper has good convergence and accuracy in the function optimization problem. Secondly, the basic principle of support vector machine (SVM) algorithm is introduced, and the intelligent water drop algorithm is proposed to optimize the parameters of support vector machine (SVM). Then the corresponding performance test is carried out by using the standard test set provided by UCI website, and the experimental results are compared with those of the traditional optimization algorithm. The experimental results show that the improved intelligent water drop algorithm is used to optimize the support vector function to obtain higher regression prediction accuracy. Finally, taking a photovoltaic power station as the research object, the parameter optimization results of genetic algorithm, particle swarm optimization algorithm and intelligent water drop algorithm are compared and analyzed by using the historical data of photovoltaic power station, and the simulation model of photovoltaic MPPT based on IWD-SVM in matlab/simulink environment is given. The results show the feasibility of using intelligent water droplets to optimize SVM model in maximum power tracking of photovoltaic system.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TM615
【参考文献】
相关期刊论文 前10条
1 周东宝;陈渊睿;;基于改进型变步长电导增量法的最大功率点跟踪策略[J];电网技术;2015年06期
2 林虹江;周步祥;冉伊;詹长杰;杨昶宇;;基于遗传优化BP神经网络算法的光伏系统最大功率点跟踪研究[J];电测与仪表;2015年05期
3 朱正伟;郭枫;孙广辉;钱露;;基于RBF-BP神经网络的光伏MPPT研究[J];计算机仿真;2015年02期
4 曹冲;;基于支持向量机光伏电池最大功率点跟踪研究[J];广东电力;2014年12期
5 蔡纪鹤;孙玉坤;李蓓;徐艳;;基于LS-SVM的光伏最大功率跟踪控制方法[J];农业机械学报;2014年S1期
6 林亚芹;程轶平;安景;;基于PSO混合核函数SVM对光伏最大功率点的预测研究[J];电气自动化;2014年05期
7 郭长亮;张素霜;李铭;杜海超;;光伏电池数学模型分析及MPPT控制仿真[J];电源技术;2014年09期
8 陈亚爱;周京华;李津;周玲玲;;梯度式变步长MPPT算法在光伏系统中的应用[J];中国电机工程学报;2014年19期
9 王红艳;万盟;;基于粒子群算法的MPPT控制策略研究[J];南京工程学院学报(自然科学版);2014年02期
10 许强强;宋泽琳;王长恺;;基于DSP的光伏电池最大功率点跟踪技术的研究[J];电源技术;2014年03期
相关博士学位论文 前1条
1 朱艳伟;光伏发电系统效率提高理论方法及关键技术研究[D];华北电力大学;2012年
相关硕士学位论文 前7条
1 辛培裕;太阳能发电技术的综合评价及应用前景研究[D];华北电力大学;2015年
2 沈义;我国太阳能的空间分布及地区开发利用综合潜力评价[D];兰州大学;2014年
3 李腾飞;复杂光照条件下光伏发电系统输出特性及最大功率点跟踪研究[D];太原理工大学;2014年
4 姚光辉;光伏并网发电系统设计及MPPT技术研究[D];浙江大学;2014年
5 张智慧;基于支持向量回归的光伏发电MPPT算法研究[D];浙江大学;2013年
6 韩新峰;基于神经网络与模糊控制的光伏MPPT复合控制的研究[D];南昌航空大学;2013年
7 郭亮;基于粒子群算法优化BP神经网络的光伏系统最大功率点跟踪研究[D];西南交通大学;2011年
,本文编号:2512012
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2512012.html