属性约简准则与约简信息损失的研究
发布时间:2019-07-27 08:23
【摘要】:属性约简是粗糙集的重要研究内容,信息熵是度量信息量的方法.在研究绝对约简和几种相对约简的基础上,归纳出属性约简的一般准则.定义了基于条件属性信息熵的属性约简和基于联合熵的属性约简,研究了几种属性约简与绝对约简之间的关系.定义了基于条件属性信息熵的约简信息损失,澄清了属性约简不损失信息的含糊观念,指出了属性约简只是在约简准则意义下不损失信息,在信息熵意义下可能损失信息.为进一步研究粗糙集、粒计算中属性约简与分类夯实了信息论基础.
[Abstract]:Attribute reduction is an important research content of rough set, and information entropy is a method to measure information. Based on the study of absolute reduction and several relative reduction, the general criteria of attribute reduction are summarized. Attribute reduction based on conditional attribute information entropy and attribute reduction based on joint entropy are defined, and the relationship between several attribute reduction and absolute reduction is studied. This paper defines the reduction information loss based on conditional attribute information entropy, clarifies the vague concept that attribute reduction does not lose information, and points out that attribute reduction only does not lose information in the sense of reduction criterion, and may lose information in the sense of information entropy. In order to further study rough sets, attribute reduction and classification in grain computing consolidate the basis of information theory.
【作者单位】: 浙江师范大学数理与信息工程学院;浙江师范大学行知学院;同济大学电子与信息工程学院;
【基金】:国家自然科学基金(No.61572442,No.61203247,No.61273304,No.61573259,No.61472166) 浙江省自然科学基金(No.LY15F020012) 浙江省自然科学青年基金(No.Q13F020006)
【分类号】:TP18
本文编号:2519878
[Abstract]:Attribute reduction is an important research content of rough set, and information entropy is a method to measure information. Based on the study of absolute reduction and several relative reduction, the general criteria of attribute reduction are summarized. Attribute reduction based on conditional attribute information entropy and attribute reduction based on joint entropy are defined, and the relationship between several attribute reduction and absolute reduction is studied. This paper defines the reduction information loss based on conditional attribute information entropy, clarifies the vague concept that attribute reduction does not lose information, and points out that attribute reduction only does not lose information in the sense of reduction criterion, and may lose information in the sense of information entropy. In order to further study rough sets, attribute reduction and classification in grain computing consolidate the basis of information theory.
【作者单位】: 浙江师范大学数理与信息工程学院;浙江师范大学行知学院;同济大学电子与信息工程学院;
【基金】:国家自然科学基金(No.61572442,No.61203247,No.61273304,No.61573259,No.61472166) 浙江省自然科学基金(No.LY15F020012) 浙江省自然科学青年基金(No.Q13F020006)
【分类号】:TP18
【相似文献】
相关期刊论文 前8条
1 柴振荣;计算机系统中如何减低信息损失的风险[J];管理科学文摘;1995年05期
2 张玉贵;;影像光学处理中的信息损失与补偿[J];遥感信息;1987年02期
3 章辉;孙优贤;;离散随机模型降阶的最小条件信息损失方法[J];控制理论与应用;2005年06期
4 何绍华;方清华;;信息传递中的信息损失认知与技术分析[J];情报理论与实践;2006年06期
5 王智慧;许俭;汪卫;施伯乐;;一种基于聚类的数据匿名方法[J];软件学报;2010年04期
6 杨晓春;刘向宇;王斌;于戈;;支持多约束的K-匿名化方法[J];软件学报;2006年05期
7 张付志;贾长伟;徐玉辰;;基于聚类的l-多样性匿名方法[J];燕山大学学报;2012年01期
8 ;[J];;年期
相关硕士学位论文 前1条
1 许信辉;隐私数据发布下的集合型数据匿名化保护方法[D];上海交通大学;2013年
,本文编号:2519878
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2519878.html