面向目标跟踪的DELTA机器人控制方法研究
发布时间:2021-01-27 12:42
近年来并联Delta机器人运动学和动力学研究受到越来越多的关注。为构建不受人类干扰的,具有完成所需任务能力的自动控制系统,需要建立它的运动学、动力学和运动控制模型。在处理机器人(尤其是串行结构的机器人)时,自主操作是一个非常普遍问题,研究人员对其给予了极大的关注,以使其成为全自动机器人,并具有在不同情况下不要与人类互动便可以做出决定的能力。但对并行Delta机器人而言相关研究相对较少。本文针对这一并联机器人系统的精度、刚度的提高和改进问题,并试图增加其智能化程度。本文挖掘并联Delta机器人的潜力,使它每分钟可以执行200个操作周期,可用于检查PCB板的工业生产线中的产品,PCB要求短时间内进行测试数百万个电子元器件。为在这种并联Delta机器人上增加目标检测和跟踪功能,扩大其使用范围,首先开展了末端执行器的运动学分析,寻找一种并联Delta机器人自动系统适用的运动学控制方法。在对系统建模中,多体系统(MBS)建模是使控制算法考虑系统所有组成物体的一种运动学和动力学方法。本文将MBS建模和目标检测结合起来实现了并联Delta机器人的自主跟踪。为获取和处理摄像机视频信号中的非结构化运动目...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:67 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
List of symbols
Chapter 1 Introduction
1.1 The Background
1.2 Introduction of Robots
1.2.1 Two Kinematic Types Robots
1.2.2 Advantages of Parallel Robots Over Serial Robots
1.2.3 Other Industrial Robots` Structures
1.2.4 Object Tracking and Gripping
1.3 Research Significance
1.4 Related Research and Literature Review Analysis
1.4.1 Literature Review
1.4.2 Literature Review Analysis
1.5 Main Content of Research
1.5.1 Research Objectives
1.5.2 Research Contents and Research Plan
1.6 Research Contribution
Chapter 2 Methodology and Mathematical Background
2.1 Multibody systems
2.2 Advantages of MBS approaches
2.3 Spatial transformation of rigid bodies
2.3.1 Angle of rotation and rotation axis technique
2.3.2 Rotations about triad orthogonal axes techniques
2.3.3 DH parameters
2.3.4 Comparative analysis between different methodologies
2.3.5 Position of a generalized vector in space
2.3.6 Euler parameters and Euler angles
2.4 Angular velocity in terms of Euler angles
2.5 Spatial kinematic analysis
2.5.1 Degrees of freedom
2.5.2 Generalized coordinates
2.5.3 Kinematic constraints
2.5.4 Spherical and revolute joints modeling
2.6 Summary
Chapter 3 Delta Robot Model and Simulation
3.1 System parameters assignment
3.2 Delta robot model simplification
3.3 MBS model parameters of the D3S-800 delta robot
3.3.1 Parameters of revolute joints
3.3.2 Parameters of spherical joints
3.4 FLARM constraints and driving constraints
3.5 Constraints equations and Jacobian matrix
3.6 Exact instantaneous dependent coordinates calculations
3.7 Simplified MBS model analysis and verification
3.8 Error sources in the simplified MBS model
3.9 Summary
Chapter 4 Object Detection and Tracking
4.1 Introduction
4.2 Problems associated to object tracking algorithms
4.2.1 Variations of the moving object appearance
4.2.2 Illumination, shadow and occlusion problems
4.2.3 Presence of abrupt motion
4.2.4 Surveillance Camera related problems
4.3 Methods of objects classification
4.4 Methods of moving objects detection
4.4.1 Background modeling and subtraction algorithm
4.4.2 Trajectory path compensation methods
4.4.3 Object tracking methods
4.5 Summary
Conclusion
结论
References
ACKNOWLEDGEMENT
Appendix 1: Matlab subroutine to calculate the Jacobian Cqd
arm, φFA and ψFA">Appendix 2: Matlab subroutine to calculate ψarm, φFA and ψFA
本文编号:3003064
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:67 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
List of symbols
Chapter 1 Introduction
1.1 The Background
1.2 Introduction of Robots
1.2.1 Two Kinematic Types Robots
1.2.2 Advantages of Parallel Robots Over Serial Robots
1.2.3 Other Industrial Robots` Structures
1.2.4 Object Tracking and Gripping
1.3 Research Significance
1.4 Related Research and Literature Review Analysis
1.4.1 Literature Review
1.4.2 Literature Review Analysis
1.5 Main Content of Research
1.5.1 Research Objectives
1.5.2 Research Contents and Research Plan
1.6 Research Contribution
Chapter 2 Methodology and Mathematical Background
2.1 Multibody systems
2.2 Advantages of MBS approaches
2.3 Spatial transformation of rigid bodies
2.3.1 Angle of rotation and rotation axis technique
2.3.2 Rotations about triad orthogonal axes techniques
2.3.3 DH parameters
2.3.4 Comparative analysis between different methodologies
2.3.5 Position of a generalized vector in space
2.3.6 Euler parameters and Euler angles
2.4 Angular velocity in terms of Euler angles
2.5 Spatial kinematic analysis
2.5.1 Degrees of freedom
2.5.2 Generalized coordinates
2.5.3 Kinematic constraints
2.5.4 Spherical and revolute joints modeling
2.6 Summary
Chapter 3 Delta Robot Model and Simulation
3.1 System parameters assignment
3.2 Delta robot model simplification
3.3 MBS model parameters of the D3S-800 delta robot
3.3.1 Parameters of revolute joints
3.3.2 Parameters of spherical joints
3.4 FLARM constraints and driving constraints
3.5 Constraints equations and Jacobian matrix
3.6 Exact instantaneous dependent coordinates calculations
3.7 Simplified MBS model analysis and verification
3.8 Error sources in the simplified MBS model
3.9 Summary
Chapter 4 Object Detection and Tracking
4.1 Introduction
4.2 Problems associated to object tracking algorithms
4.2.1 Variations of the moving object appearance
4.2.2 Illumination, shadow and occlusion problems
4.2.3 Presence of abrupt motion
4.2.4 Surveillance Camera related problems
4.3 Methods of objects classification
4.4 Methods of moving objects detection
4.4.1 Background modeling and subtraction algorithm
4.4.2 Trajectory path compensation methods
4.4.3 Object tracking methods
4.5 Summary
Conclusion
结论
References
ACKNOWLEDGEMENT
Appendix 1: Matlab subroutine to calculate the Jacobian Cqd
arm, φFA and ψFA">Appendix 2: Matlab subroutine to calculate ψarm, φFA and ψFA
本文编号:3003064
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/3003064.html