多尺度仿生游动机器人的研究
发布时间:2021-01-31 17:52
仿生游动机器人凭借其卓越的性能应用于多种领域,极大的引起了研究者的广泛关注。在宏观尺度,国家海洋资源在经济发展和全球战略地位方面扮演着重要角色。目前对于水下海洋资源的探索主要依靠传统的螺旋桨推进方式,该推进方式技术成熟,推进速度较快,但也存在着诸如推进效率低、机动性能差、体积庞大、对环境扰动大,以及制造和维护费用高等缺陷。在微观尺度,无线的微型机器人在多种生物医学应用中表现出显著的潜力,例如微创诊断、药物运载、功能性细胞传输以及医学组织工程等。尽管一些微型机器人为此已被研发出来,但新颖可靠的微型机器人仍值得探索扩展。游动生物历经了数百万年的进化和自然选择已具备了卓越的身体机理和非凡的游动性能,以应对其复杂多变的生存环境。因此,模仿它们的推进机理和结构形态为机器人的设计和控制方法等提供了重要的思路和可能性。在本论文中,对宏观和微观尺度的两种仿生游动机器人进行了研究和展示。本论文分为以下两部分。在第一部分,介绍了一款采用耦合了摆动推进和射流推进机制的仿生机器鱼。该机器鱼采用了双尾鳍推进结构,两个尾鳍平行地安装在机器鱼的尾部,并且尾鳍的形状是仿照具有优异加速性能的比目鱼的尾鳍形状。双尾鳍的对...
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:136 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Statement of the Problems
1.3 Research Objectives
1.4 Methodology and Significance
1.5 Conclusion
Chapter 2 Literature Review
2.1 Introduction
2.2 Fish Swimming Mechanisms
2.3 Typical Bioinspired Swimming Robots on the Macroscale
2.4 Propulsive Mechanisms of Microrobots
2.4.1 Chemical Propulsion
2.4.2 Biological Propulsion
2.4.3 Optical Propulsion
2.4.4 Electrical Propulsion
2.4.5 Acoustic Propulsion
2.4.6 Magnetic Propulsion
2.5 Magnetic Actuation Methods
2.5.1 Magnetic Materials
2.5.2 Magnetic Actuation Principle
2.5.3 Magnetic Fields
2.6 Microrobot Fabrication
2.7 Conclusion
Chapter 3 A Dual Caudal-fin Robotic Fish with an Integrated Oscillatory and Jet Propulsion
3.1 Introduction
3.2 Design of Robotic Fish
3.3 Integrated Propulsion of Dual Caudal Fins
3.4 Characterization Analysis of Dual Caudal-fin Mechanism
3.4.1 Numerical Model
3.4.2 Dynamic Analysis
3.4.3 Forces
3.5 Swimming Performance of Robotic Fish
3.5.1 Experimental Setup
3.5.2 Swimming Speed with Dual Caudal Fins
3.5.3 Swimming Speed with a Single Caudal Fin
3.5.4 Maneuvers with Dual Caudal Fins
3.6 Conclusion
Chapter 4 A Magnetically Driven Undulatory Microswimmer with Multiple Rigid Segments
4.1 Introduction
4.2 Design of Microswimmer
4.3 Fabrication and Characteristics of the Microswimmer
4.3.1 Experimental Setup
4.3.2 Fabrication Process
4.3.3 Scanning Electron Microscopy (SEM)
4.3.4 Energy-dispersive Spectrometry (EDS)
4.4 Actuation of the Microswimmer
4.4.1 Magnetic Actuation Principles
4.4.2 Magnetic Actuation System
4.4.3 Control Strategy
4.5 Characterization Analysis of the Microswimmer
4.5.1 Theoretical Model Analysis
4.5.2 Hydrodynamic Analysis
4.6 Swimming Experiments on the Microsiwmmer
4.6.1 Experimental Preparation
4.6.2 Oscillation Tests of the Magnetic Segment
4.6.3 Undulation of the Microswimmer
4.6.4 Swimming Speeds of the Microswimmer
4.6.5 Navigation of the Microswimmer
4.6.6 Justification for Swimming
4.7 Conclusion
Chapter 5 Conclusion and Future Work
5.1 Conclusion
5.2 Future Work
References
Appendix
Acknowledgements
本文编号:3011325
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:136 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Statement of the Problems
1.3 Research Objectives
1.4 Methodology and Significance
1.5 Conclusion
Chapter 2 Literature Review
2.1 Introduction
2.2 Fish Swimming Mechanisms
2.3 Typical Bioinspired Swimming Robots on the Macroscale
2.4 Propulsive Mechanisms of Microrobots
2.4.1 Chemical Propulsion
2.4.2 Biological Propulsion
2.4.3 Optical Propulsion
2.4.4 Electrical Propulsion
2.4.5 Acoustic Propulsion
2.4.6 Magnetic Propulsion
2.5 Magnetic Actuation Methods
2.5.1 Magnetic Materials
2.5.2 Magnetic Actuation Principle
2.5.3 Magnetic Fields
2.6 Microrobot Fabrication
2.7 Conclusion
Chapter 3 A Dual Caudal-fin Robotic Fish with an Integrated Oscillatory and Jet Propulsion
3.1 Introduction
3.2 Design of Robotic Fish
3.3 Integrated Propulsion of Dual Caudal Fins
3.4 Characterization Analysis of Dual Caudal-fin Mechanism
3.4.1 Numerical Model
3.4.2 Dynamic Analysis
3.4.3 Forces
3.5 Swimming Performance of Robotic Fish
3.5.1 Experimental Setup
3.5.2 Swimming Speed with Dual Caudal Fins
3.5.3 Swimming Speed with a Single Caudal Fin
3.5.4 Maneuvers with Dual Caudal Fins
3.6 Conclusion
Chapter 4 A Magnetically Driven Undulatory Microswimmer with Multiple Rigid Segments
4.1 Introduction
4.2 Design of Microswimmer
4.3 Fabrication and Characteristics of the Microswimmer
4.3.1 Experimental Setup
4.3.2 Fabrication Process
4.3.3 Scanning Electron Microscopy (SEM)
4.3.4 Energy-dispersive Spectrometry (EDS)
4.4 Actuation of the Microswimmer
4.4.1 Magnetic Actuation Principles
4.4.2 Magnetic Actuation System
4.4.3 Control Strategy
4.5 Characterization Analysis of the Microswimmer
4.5.1 Theoretical Model Analysis
4.5.2 Hydrodynamic Analysis
4.6 Swimming Experiments on the Microsiwmmer
4.6.1 Experimental Preparation
4.6.2 Oscillation Tests of the Magnetic Segment
4.6.3 Undulation of the Microswimmer
4.6.4 Swimming Speeds of the Microswimmer
4.6.5 Navigation of the Microswimmer
4.6.6 Justification for Swimming
4.7 Conclusion
Chapter 5 Conclusion and Future Work
5.1 Conclusion
5.2 Future Work
References
Appendix
Acknowledgements
本文编号:3011325
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/3011325.html