基于三重低秩正则化的鲁棒半监督多标记学习算法及其在图像标注中的应用
发布时间:2021-04-27 18:11
图像自动标注技术在图像检索领域发挥着越来越重要的作用,逐渐成为计算机视觉的研究热点。数字可视化技术的进步和发展使得大量的图像可以在网络上获取,用户可以根据自己的喜好从存储库中检索这些图像,然而这些图像大多数都没有描述信息。图像标注的传统做法是由人类来完成的,这是一种费时费力的标注方法,也是一种过于主观的标注方法。另一个难点是解决低层视觉特征(颜色、形状和纹理)与用于解释图像的高层语义特征之间的语义鸿沟问题。大多数图像检索方法是基于内容的图像检索(CBIR)和基于标签的图像检索(TBIR)方法。CBIR通过提取图像本身的颜色、纹理和形状等特征,在低层特征上进行工作,但由于语义鸿沟,一般用户无法使用它。TBIR的工作原理是根据文本查询和图像的手工标注之间的匹配来查找相关图像。但是它高度依赖于标签的可用性和质量。然而,手动标注的标记是主观的、模糊的、有限且带噪声的。近年来,该领域的研究已经通过图像自动标注的方法(AIA),将低层图像特征与高层语义之间的语义鸿沟联系起来。自动图像标注算法假设采集的图像样本具有语义标记和低层特征表示。该标注方法使用机器学习算法,然后可以训练它使用低层特征进行语义...
【文章来源】:北京交通大学北京市 211工程院校 教育部直属院校
【文章页数】:68 页
【学位级别】:硕士
【文章目录】:
致谢
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Problem of statement
1.3 Scope and objectives
1.4 Methodology
1.5 Thesis outline
Chapter 2 Literature Review
2.1 Background
2.2 Automatic Image annotation
2.3 Multi-Label Learning
2.4 Semi-Supervised Multi-Label Learning for Image Annotation
Chapter 3 Proposed Method
3.1 Graph Regularized Low-Rank Feature Mapping
3.1.1 The Regularization Framework
3.1.2 The Optimization
3.2 Semi-Supervised Dual Low-Rank Feature Mapping
3.2.1 The Regularization
3.2.2 The Optimization
3.3 Robust Semi-Supervised Multi-Label Learning by Triple Low-Rank Regularization
3.3.1 Problem Formulation
3.3.2 The Regularization Framework
3.3.3 The Optimization
3.3.4 APG Algorithm
Chapter 4 Experiments and Analysis
4.1 Image Datasets
4.2 The Preprocessed
4.3 Normalization
4.4 Evaluation Measure
4.5 Experiment Ⅰ: comparisons with the state-of-the-art multi-label learning method
4.6 Experiment Ⅱ: multi-label learning with incomplete training labels
4.7 Experiment Ⅲ: parameter sensitivity
4.8 Experiment Ⅳ: comparisons with the state-of-the-art image annotation methods
4.9 Performance comparison
Chapter 5 Conclusion
References
作者简历及攻读硕士/博士学位期间取得的研究成果
学位论文数据集
本文编号:3163928
【文章来源】:北京交通大学北京市 211工程院校 教育部直属院校
【文章页数】:68 页
【学位级别】:硕士
【文章目录】:
致谢
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Problem of statement
1.3 Scope and objectives
1.4 Methodology
1.5 Thesis outline
Chapter 2 Literature Review
2.1 Background
2.2 Automatic Image annotation
2.3 Multi-Label Learning
2.4 Semi-Supervised Multi-Label Learning for Image Annotation
Chapter 3 Proposed Method
3.1 Graph Regularized Low-Rank Feature Mapping
3.1.1 The Regularization Framework
3.1.2 The Optimization
3.2 Semi-Supervised Dual Low-Rank Feature Mapping
3.2.1 The Regularization
3.2.2 The Optimization
3.3 Robust Semi-Supervised Multi-Label Learning by Triple Low-Rank Regularization
3.3.1 Problem Formulation
3.3.2 The Regularization Framework
3.3.3 The Optimization
3.3.4 APG Algorithm
Chapter 4 Experiments and Analysis
4.1 Image Datasets
4.2 The Preprocessed
4.3 Normalization
4.4 Evaluation Measure
4.5 Experiment Ⅰ: comparisons with the state-of-the-art multi-label learning method
4.6 Experiment Ⅱ: multi-label learning with incomplete training labels
4.7 Experiment Ⅲ: parameter sensitivity
4.8 Experiment Ⅳ: comparisons with the state-of-the-art image annotation methods
4.9 Performance comparison
Chapter 5 Conclusion
References
作者简历及攻读硕士/博士学位期间取得的研究成果
学位论文数据集
本文编号:3163928
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/3163928.html