基于LBP-KNN和CNN-SVM的人脸识别算法
发布时间:2021-06-22 00:27
人脸在我们社会交往中扮演着重要的角色,传递着我们自身信息。生物识别密码技术是一种非常关键的安全技术,因其有着广泛的应用前景,在过去的几年里一直受到业内广泛的关注。人的面部表情有很多的变化(如:脸部老化、面部表情、明亮程度、不标准的姿势等),这些变化会导致脸部识别信息不准确,辨认身份能力较差。虽然人脸识别的技术上,已经有了很大的进展,同时也显示了非常精确的结果,但是在实际应用中,年龄不变的人脸识别仍然是系统应用中一个非常重要的挑战。我们研究的目的是提供一种解决脸部识别问题的方法,这些问题收很多参数变化的影响,如姿势、明亮程度、年龄不变和面部表达等。为了解决这些问题,下一节将详细阐述不同的算法,来证明所提出模型的有效性。为了证明在姿态变化、明亮程度和表达方面获取结果的可靠性,我们结合了两种算法:(a)鲁棒性local binary pattern(LBP),用于面部特征提取;(b)k-nearest neighbor(K-NN)进行图像分类。我们的实验已经在CMU PIE(Carnegie Mellon University Pose,Illumination,and Expression...
【文章来源】:杭州电子科技大学浙江省
【文章页数】:72 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
Chapter1 Introduction
1.1 Problem Definition,Motivation and Objectives
1.2 Ethic and Society Implications
1.3 Literature Survey
1.3.1 Pose,Illumination and Expression Face Recognition
1.3.2 Age Invariant Face Recognition
1.4 Resume
Chapter2 Face Recognition Fundamental
2.1 History of Face Recognition
2.2 Face Recognition System
2.3 Different Face recognition challenges
2.3.1 Pose Variation issues
2.3.2 Illumination Variation issues
2.3.3 Expression Variation issues
2.3.4 Age Invariant issues
2.3.5 Other related issues:Plastic/Cosmetic Surgery and Makeup
2.4 Resume
Chapter3 Face Recognition using Local Binary Pattern And K Nearest Neighbor
3.1 Local Binary Pattern(LBP)
3.2 Using K-Nearest Neighbor(KNN)to Classify a Face Image
3.3 Gaussian Filter
3.4 Proposed Face Recognition System
3.5 Test Results for CMU PIE and LFW
Chapter4 Face Recognition using Convolutional Neural Network and Support Vector Machine
4.1 Convolutional Neural Network(CNN)
4.2 Support Vector Machine(SVM)
4.3 Proposed Aging Face Recognition
4.4 Test Results for MORPH Album2 and FG-Net
Chapter5 Conclusion
Acknowledgement
References
Appendix
本文编号:3241736
【文章来源】:杭州电子科技大学浙江省
【文章页数】:72 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
Chapter1 Introduction
1.1 Problem Definition,Motivation and Objectives
1.2 Ethic and Society Implications
1.3 Literature Survey
1.3.1 Pose,Illumination and Expression Face Recognition
1.3.2 Age Invariant Face Recognition
1.4 Resume
Chapter2 Face Recognition Fundamental
2.1 History of Face Recognition
2.2 Face Recognition System
2.3 Different Face recognition challenges
2.3.1 Pose Variation issues
2.3.2 Illumination Variation issues
2.3.3 Expression Variation issues
2.3.4 Age Invariant issues
2.3.5 Other related issues:Plastic/Cosmetic Surgery and Makeup
2.4 Resume
Chapter3 Face Recognition using Local Binary Pattern And K Nearest Neighbor
3.1 Local Binary Pattern(LBP)
3.2 Using K-Nearest Neighbor(KNN)to Classify a Face Image
3.3 Gaussian Filter
3.4 Proposed Face Recognition System
3.5 Test Results for CMU PIE and LFW
Chapter4 Face Recognition using Convolutional Neural Network and Support Vector Machine
4.1 Convolutional Neural Network(CNN)
4.2 Support Vector Machine(SVM)
4.3 Proposed Aging Face Recognition
4.4 Test Results for MORPH Album2 and FG-Net
Chapter5 Conclusion
Acknowledgement
References
Appendix
本文编号:3241736
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/3241736.html