当前位置:主页 > 科技论文 > 自动化论文 >

检测磺酸类农药残留和生物硫醇传感器的构建

发布时间:2021-10-06 19:13
  纳米材料,与传统的块状材料相比,具有独特的光学性质。例如,半导体量子点,与传统的荧光染料相比,具有很高的荧光量子产率;贵金属金银纳米粒子则具有极佳的荧光猝灭能力。这些材料被广泛的用于环境污染物和生物分子的检测应用。微球,作为商业化悬浮阵列芯片平台的核心材料,在高通量生物检测领域展现出优越的性能,该技术不仅检测快速,样品用量少,而且自动化程度高。然而,利用微球和纳米材料的结合来开发更高检测灵敏度的检测方法却鲜有报道。在本研究中,我们集中在利用微球,半导体量子点和贵金属金纳米粒子构建纳米复合材料体系以实现对包括生物硫醇和农药的检测。在生物硫醇的检测中,我们开发的基于流式方法的探针体系以荧光打开的方式实现了对生物硫醇的检测,检测灵敏度达到0.1μmol/L。此外,农药和重金属离子也被用来检验我们开发的纳米材料复合体系检测的一般性。实验结果表明,通过改变纳米材料表面的修饰分子,我们开发的检测平台可以用来检测不同的目标物。实验具体内容如下:1.在这一部分,我们首次开发了基于荧光打开模式的含硫农药的检测。该探针的构建首先是在聚苯乙烯微球表面通过静电吸附作用修饰上金纳米粒子,然后再同样通过静电吸附作... 

【文章来源】:华中农业大学湖北省 211工程院校 教育部直属院校

【文章页数】:128 页

【学位级别】:博士

【文章目录】:
LIST OF ABBRVIATIONS
摘要
Abstract
1.CHAPTER 1 (Background)
    1.1.Introduction
        1.1.1.Research background and problem
    1.2.Review of literature
        1.2.1.Pesticide residues
        1.2.2.Biothiols(BT)
    1.3.Methods
        1.3.1.The detection methods for sulfur pesticide residues
            1.3.1.1.The SERS method for pesticide residues detection
        1.3.2.The detection methods for biothiols
            1.3.2.1.The UV-HPLC,RP-HPLC and UHPLC detection methods for biothiols
            1.3.2.2.The colorimetric detection methods for biothiols
            1.3.2.3.The fluorescence detection methods for biothiols
    1.4.References
2.CHAPTER 2:Sensor for sulfur pesticide residues detection by turn on fluorescence method
    2.1.Introduction
        2.1.1.The aim of this chapter
    2.2.Review of literature
    2.3.Materials and Methods
        2.3.1.Materials and Reagents
            2.3.1.1.Equipment
        2.3.2.Methods
            2.3.2.1.Polystyrene microbeads synthesis and sulfonation
            2.3.2.2.Gold nanoparticles synthesis
            2.3.2.3.Probe preparation
                2.3.2.3.1.Test rhodamine B(RhB)with Cys and Thiram
                2.3.2.3.2.Using Au NPs as a quencher for RhB to detect Cys and Thiram
                2.3.2.3.3.Use PS~+ (200 nm)beads as a carrier for prepare probe to detect Cys and Thiram
                    2.3.2.3.3.1.Preparing probe PS+ (200 nm) @Au/RhB for Thiram detection
                    2.3.2.3.3.2.Detect the best time for the detection of Thiram
                    2.3.2.3.3.3.Detect the sensitivity for the probe
                    2.3.2.3.3.4.Detect the selectivity for the probe
                2.3.2.3.4.Preparing the probe by use PS~+2 μm
                    2.3.2.3.4.1.Detect the best time for the detection of Thiram
                    2.3.2.3.4.2.Detect the sensitivity for the probe
                    2.3.2.3.4.3.Detect the selectivity for the probe
                2.3.2.3.5.Detect Thiram in spiked sample
    2.4.Results and Discussion
        2.4.1.Characterization of the procedure to find the suitable preparation for the probe to detect Thiram
        2.4.2.Select the best time for the Thiram detection with probe
        2.4.3.Characterization of probe preparation by PS+2 μm beads
        2.4.4.The comparison between using PS~+2 μm beads and PS~+200 nm beads for preparing probe
        2.4.5.Detect the probe sensitivity for Thiram detection
        2.4.6.Detect the probe selectivity for Thiram detection
        2.4.7.Recovery rate for each spiked sample
    2.5.Conclusion
    2.6.References
3.CHAPTER 3:Sensor for biothiols detection by turn on fluorescence method
    3.1.Introduction
        3.1.1.The aim of this chapter
    3.2.Review of literature
    3.3.Materials and Methods
        3.3.1.Materials and Reagents
            3.3.1.1.Equipment
        3.3.2.Methods
            3.3.2.1.Synthesis of Polystyrene microbeads and sulfonation
            3.3.2.2.Gold nanoparticles synthesis
            3.3.2.3.The synthesis procedure of Biothiol probe(PS/QDs/Au)
            3.3.2.4.Flow cytometry-based detection of biothiols by(PS/QDs/Au)probe
            3.3.2.5.Cell incubation and imaging
            3.3.2.6.MTT Assay
            3.3.2.7.Characterization
            3.3.2.8.Detect Cys in Human urine
    3.4.Results and Discussion
        3.4.1.Synthesis of biothiols probe and characterization
        3.4.2.Effect of pH and reaction kinetics for the biothiols detection
        3.4.3.Flow cytometry-based biothiols detection
        3.4.4.Biothiols detection in serum
        3.4.5.Biothiols detection in human urine
    2.5.Conclusion
    3.6.References
4.CHAPTER 4:Sensors for sulfur pesticide residues and/or biothiols detection
    4.1.Introduction
        4.1.1.The aim of this chapter
    4.2.Review
    4.3.Materials and Methods
        4.3.1.Materials and Reagents
            4.3.1.1.Equipment
        4.3.2.Methods
            4.3.2.1.Synthesis of Polystyrene(2μm)microbeads and sulfonation
            4.3.2.2.Gold nanoparticles synthesis
            4.3.2.3.The synthesis procedure for PS/QDs/PDAMAC/SiO2-MPA beads
            4.3.2.4.The synthesis procedure for PS/QDs(Highly Fluorescent)
            4.3.2.5.The synthesis procedure for dual fluorescent probe
            4.3.2.6.Preparation of Magnetic Beads and the pDA Coating
                4.3.2.6.1.Preparing probe by using magnetic micro beads3 μm(MB)
                4.3.2.6.2.Preparing probe by using magnetic micro beads4 μm(MB)
            4.3.2.7.Detect Thiram by using PQPG probe
                4.3.2.7.1.The effect of different ions on the fluorescence signal for PQPG probe after turned on by used Cys
            4.3.2.8.Detect biothiols by colorimetric method
            4.3.2.9.Turn on fluorescence method to detect Cys by using CTAB-QDs
                4.3.2.9.1.Preparation of CTAB-QDs(Cetyltrimethylammonium bromide-QDs)
            4.3.2.10.Detect Thiram by use PMM(Plasmonic Magnetic Microbeads)and SERS method
                4.3.2.10.1.Preparation of13 nm Au seeds decorated by magnetic PS beads with dopamine coating
                    4.3.2.10.1.1.Preparation of Au seeds(13 nm)solution
                4.3.2.10.2.Ag nano-island growth on dopamine shell
                    4.3.3.10.2.1.Preparation of glucose alkaline solution
                    4.3.2.10.2.2.Preparation of silver nitrate ammonia solution
                4.3.2.10.3.Select the best PMM structure to detect Thiram by use SERS method
            4.3.2.11.The steps to find the best preparation method for PQPG probe to detect biothiols
    4.4.Results and Discussion
        4.4.1.Characterization of dual fluorescent probe
        4.4.2.Fabrication of MB
            4.4.2.1.Characterization of probe preparation by using magnetic micro beads 3μm(MB)
            4.4.2.2.Characterization of probe preparation by using magnetic micro beads 4μm(MB)
        4.4.3.Detect Thiram by using PQPG probe
            4.4.3.1.The effect of different ions on the fluorescence signal for PQPG probe after turned on by used Cys
        4.4.4.Detect biothiols by colorimetric method
        4.4.5.Turn on fluorescence method to detect Cys by using CTAB-QDs
        4.4.6.The steps to find the best preparation method for PQPG probe to detect biothiols
    4.5.References
5.CHAPTER 5:Summary and the future work
    5.1.Summary
    5.2.Future work
Acknowledgement
LIST OF PUBLICATIONS


【参考文献】:
期刊论文
[1]生物巯化物的可视化检测(英文)[J]. Yuan-yuan XU,Yang-yang SUN,Yu-juan ZHANG,Chen-he LU,Jin-feng MIAO.  Journal of Zhejiang University-Science B(Biomedicine & Biotechnology). 2016(10)



本文编号:3420590

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/3420590.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户24793***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com