并联机器人运动学模型优化解析方法研究
发布时间:2021-12-19 14:05
本文的主要目的是建立一个新的算法,以简化所有类型的并联机器人的运动学问题的解决,而不限制自由度的数量。该算法适用于各种并联机器人结构,具有精度高、可靠性好、执行时间短、比现有方法更易于使用的特点。五连杆并联机器人的数值模拟和实验结果表明,该方法可用于解决各种并联机器人的运动学问题,对于结构复杂和自由度多的并联机器人,该方法也具有计算时间短、精度高、可靠性高、结果收敛快等优点。此外,本文还扩展了该方法在机器人公差设计领域的应用。通过两个仿真实验验证了该方法的可行性;计算和仿真结果也说明了所提出的公差分配方法的准确性和效率。首先,在研究手臂机器人优化问题的基础上,本论文提供了新的接入方法以寻找运动学参数,即将传统并联机器人运动学问题转换成有约束的非线性最优化问题,其目标函数是Rosenbrock-Banana函数。经过很多试验,在非线性优化问题中Rosenbrock-Banana函数最合适是广义简约算法。从运动学控制试验中直接寻找,将缩短编程开发时间。其次,本文提出一种新的方式分类并联机器人,非棱柱并联机器人与棱柱并联机器人,包括3种:非棱柱并联机器人(类型1),棱柱并联机器人分成两种:主...
【文章来源】:华南理工大学广东省 211工程院校 985工程院校 教育部直属院校
【文章页数】:248 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Methods for information initialization of robot
1.2 Robot kinematics, models and methods
1.2.1 Robot kinematics
1.2.2 Modelling phase
1.2.3 Model survey phase
1.2.4 An overview of methods for solving kinematic problems of parallel robot
1.3 Research orientation
1.4 Subjects and research methods
1.5 Contents of the present thesis
Chapter 2 Mathematical Bases for Changing from the Robot Kinematic Problem to theOptimization Problem
2.1 Introduction
2.2 Robot kinematic under the optimization form
2.2.1 The optimal mathematical model of robotic kinematic
2.2.2 Bases for optimization problems on the robot arm
2.2.3 The optimal movement problem
2.2.4 Algorithm diagram
2.2.5 The uniform precision structure
2.2.6 The effect of the difference calculation on the accuracy of the problem
2.3 Types of associated vector equations for parallel robots
2.3.1 Difference in the way to build the associated vector equations for robot arms andparallel robots
2.3.2 The non-prismatic parallel robot (Type 1)
2.3.3 The prismatic parallel robots
2.3.4 Identify similarities in the mathematical model of parallel robots and robot arms
2.4 Chapter conclusion
Chapter 3 Application of Generalized Reduced Gradient Algorithm to Solve theKinematic Problem of Parallel Robots
3.1 Introduction
3.2 Generalized Reduced Gradient algorithm
3.3 Introduction of optimization application of solver in Microsoft-Excel
3.4 Resolution of the Kinematic Problems of Parallel Robots using Generalized ReducedGradient algorithm
3.4.1 Parallel robot of type 1
3.4.2 Equivalent substitution configuration and the formulation of variables change
3.4.3 Parallel robot of type 2
3.4.4 Parallel robot of type 3
3.4.5 The assurance of unique solution between two different spaces
3.4.6 Testing the reliability of the novel method
3.4.7 Testing the precision of the novel method and compare accuracy with other methods
3.5 Chapter’s conclusion
Chapter 4 Simulation and Experimental Study
4.1 Introduction
4.2 Content of experiment
4.3 Based on experimental design
4.3.1 Parallel Scara robot
4.3.2 Settings of kinematic characteristics of joints for Parallel Scara robot
4.4 Testing simulation and accuracy of numerical results
4.4.1 Inspection of results by graphics
4.4.2 Inspection of results by simulation software
4.5 Experimental study
4.5.1 Experimental setup
4.5.2 Basic parameters of mechanical-electrical-electronic components
4.5.3 Design of control system software
4.5.4 Results of experiments and discussion
4.6 Chapter conclusions
Chapter 5 Application Generalized Reduced Gradient Algorithm to DetermineTolerance Design of Robot Parameters
5.1 Introduction
5.2 Literature review of tolerance design
5.3 The formation of the optimal problem
5.4 Solution method for the optimization problem
5.5 Determination of the tolerance of joint angle movement
5.6 Determination of the deviation of link dimensions and joint free radial movement byusing inverse kinematic
5.7 The example of numerical simulation
5.7.1 Robot arm
5.7.2 Parallel Robot
5.8 Checking the accuracy of the proposed method
5.9 Chapter conclusion
Chapter 6 Conclusions and Future Works
6.1 Conclusions
6.2 The main points of innovation
6.3 Future works
References
AppendixⅠ
Achievement of research
Acknowledgements
附件
【参考文献】:
期刊论文
[1]基于改进粒子群算法的并联机器人运动学精度提高新方法[J]. 杜义浩,谢平,田培涛,刘彬. 中国机械工程. 2012(16)
[2]6-PRRS并联机器人正运动学求解[J]. 杨永刚,赵杰,刘玉斌,朱延河. 吉林大学学报(工学版). 2008(03)
[3]混沌映射牛顿迭代法与平面并联机构正解研究[J]. 罗佑新,李晓峰,罗烈雷,廖德岗. 机械设计与研究. 2007(02)
[4]同伦算法在并联机器人运动学中的应用[J]. 董滨,张祥德. 应用数学和力学. 2001(12)
本文编号:3544548
【文章来源】:华南理工大学广东省 211工程院校 985工程院校 教育部直属院校
【文章页数】:248 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Methods for information initialization of robot
1.2 Robot kinematics, models and methods
1.2.1 Robot kinematics
1.2.2 Modelling phase
1.2.3 Model survey phase
1.2.4 An overview of methods for solving kinematic problems of parallel robot
1.3 Research orientation
1.4 Subjects and research methods
1.5 Contents of the present thesis
Chapter 2 Mathematical Bases for Changing from the Robot Kinematic Problem to theOptimization Problem
2.1 Introduction
2.2 Robot kinematic under the optimization form
2.2.1 The optimal mathematical model of robotic kinematic
2.2.2 Bases for optimization problems on the robot arm
2.2.3 The optimal movement problem
2.2.4 Algorithm diagram
2.2.5 The uniform precision structure
2.2.6 The effect of the difference calculation on the accuracy of the problem
2.3 Types of associated vector equations for parallel robots
2.3.1 Difference in the way to build the associated vector equations for robot arms andparallel robots
2.3.2 The non-prismatic parallel robot (Type 1)
2.3.3 The prismatic parallel robots
2.3.4 Identify similarities in the mathematical model of parallel robots and robot arms
2.4 Chapter conclusion
Chapter 3 Application of Generalized Reduced Gradient Algorithm to Solve theKinematic Problem of Parallel Robots
3.1 Introduction
3.2 Generalized Reduced Gradient algorithm
3.3 Introduction of optimization application of solver in Microsoft-Excel
3.4 Resolution of the Kinematic Problems of Parallel Robots using Generalized ReducedGradient algorithm
3.4.1 Parallel robot of type 1
3.4.2 Equivalent substitution configuration and the formulation of variables change
3.4.3 Parallel robot of type 2
3.4.4 Parallel robot of type 3
3.4.5 The assurance of unique solution between two different spaces
3.4.6 Testing the reliability of the novel method
3.4.7 Testing the precision of the novel method and compare accuracy with other methods
3.5 Chapter’s conclusion
Chapter 4 Simulation and Experimental Study
4.1 Introduction
4.2 Content of experiment
4.3 Based on experimental design
4.3.1 Parallel Scara robot
4.3.2 Settings of kinematic characteristics of joints for Parallel Scara robot
4.4 Testing simulation and accuracy of numerical results
4.4.1 Inspection of results by graphics
4.4.2 Inspection of results by simulation software
4.5 Experimental study
4.5.1 Experimental setup
4.5.2 Basic parameters of mechanical-electrical-electronic components
4.5.3 Design of control system software
4.5.4 Results of experiments and discussion
4.6 Chapter conclusions
Chapter 5 Application Generalized Reduced Gradient Algorithm to DetermineTolerance Design of Robot Parameters
5.1 Introduction
5.2 Literature review of tolerance design
5.3 The formation of the optimal problem
5.4 Solution method for the optimization problem
5.5 Determination of the tolerance of joint angle movement
5.6 Determination of the deviation of link dimensions and joint free radial movement byusing inverse kinematic
5.7 The example of numerical simulation
5.7.1 Robot arm
5.7.2 Parallel Robot
5.8 Checking the accuracy of the proposed method
5.9 Chapter conclusion
Chapter 6 Conclusions and Future Works
6.1 Conclusions
6.2 The main points of innovation
6.3 Future works
References
AppendixⅠ
Achievement of research
Acknowledgements
附件
【参考文献】:
期刊论文
[1]基于改进粒子群算法的并联机器人运动学精度提高新方法[J]. 杜义浩,谢平,田培涛,刘彬. 中国机械工程. 2012(16)
[2]6-PRRS并联机器人正运动学求解[J]. 杨永刚,赵杰,刘玉斌,朱延河. 吉林大学学报(工学版). 2008(03)
[3]混沌映射牛顿迭代法与平面并联机构正解研究[J]. 罗佑新,李晓峰,罗烈雷,廖德岗. 机械设计与研究. 2007(02)
[4]同伦算法在并联机器人运动学中的应用[J]. 董滨,张祥德. 应用数学和力学. 2001(12)
本文编号:3544548
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/3544548.html