多策略融合粒子群算法及其收敛性分析
本文关键词:多策略融合粒子群算法及其收敛性分析,由笔耕文化传播整理发布。
【摘要】:针对使用经典线性递减策略来确定惯性权重的粒子群优化算法在实际运算过程中与粒子寻优的非线性变化特点不匹配的问题,提出一种改进的粒子群算法。该算法采用多次随机初始化的策略初始种群位置,再对惯性权重引入随机因子,使其基于粒子适应度大小来动态调节惯性权重,更好地引导粒子进行搜索,提高算法的收敛精度,并证明其能以概率1全局收敛。为了验证该算法的寻优性能,通过8个经典测试函数将标准粒子群算法、惯性权重递减的粒子群算法及提出的改进算法在不同维度下进行测试比较。结果表明,该算法的寻优精度更高。
【作者单位】: 广西科技大学电气与信息工程学院;广西汽车零部件与整车技术重点实验室;
【关键词】: 粒子群算法 初始化策略 动态调节 惯性权重
【基金】:广西重点实验室项目(No.14-045-44) 广西教育厅科研项目(No.201202ZD071) 广西工学院博士基金会项目(No.院科博11Z09)
【分类号】:TP18
【正文快照】: 1引言粒子群优化(Particle Swarm Optimization,PSO)算法是一种群体智能算法,由Kennedy博士等人在1995年提出[1]。PSO算法的基本思想起源于对鸟类群体捕食行为的研究。由于PSO算法在多峰值、非线性和不可微等一系列复杂问题上有着良好的寻优表现,引起了学者们的广泛关注;又因P
【相似文献】
中国期刊全文数据库 前10条
1 秦玉灵;孔宪仁;罗文波;;混沌量子粒子群算法在模型修正中的应用[J];计算机工程与应用;2010年02期
2 陈治明;;新型量子粒子群算法及其性能分析研究[J];福建电脑;2010年05期
3 牛永洁;;一种新型的混合粒子群算法[J];信息技术;2010年10期
4 全芙蓉;;粒子群算法的理论分析与研究[J];硅谷;2010年23期
5 刘衍民;赵庆祯;邵增珍;;一种改进的完全信息粒子群算法研究[J];曲阜师范大学学报(自然科学版);2011年01期
6 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[J];计算机工程与应用;2011年05期
7 熊智挺;谭阳红;易如方;陈赛华;;一种并行的自适应量子粒子群算法[J];计算机系统应用;2011年08期
8 孟纯青;;非线性粒子群算法[J];微计算机应用;2011年08期
9 任伟建;武璇;;一种动态改变学习因子的简化粒子群算法[J];自动化技术与应用;2012年10期
10 刘飞,孙明,李宁,孙德宝,邹彤;粒子群算法及其在布局优化中的应用[J];计算机工程与应用;2004年12期
中国重要会议论文全文数据库 前10条
1 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(上)[C];2012年
2 陈定;何炳发;;一种新的二进制粒子群算法在稀疏阵列综合中的应用[A];2009年全国天线年会论文集(上)[C];2009年
3 陈龙祥;蔡国平;;基于粒子群算法的时滞动力学系统的时滞辨识[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
4 于颖;李永生;於孝春;;新型离散粒子群算法在波纹管优化设计中的应用[A];第十一届全国膨胀节学术会议膨胀节设计、制造和应用技术论文选集[C];2010年
5 刘卓倩;顾幸生;;一种基于信息熵的改进粒子群算法[A];系统仿真技术及其应用(第7卷)——'2005系统仿真技术及其应用学术交流会论文选编[C];2005年
6 熊伟丽;徐保国;;粒子群算法在支持向量机参数选择优化中的应用研究[A];2007中国控制与决策学术年会论文集[C];2007年
7 方卫华;徐兰玉;陈允平;;改进粒子群算法在大坝力学参数分区反演中的应用[A];2012年中国水力发电工程学会大坝安全监测专委会年会暨学术交流会论文集[C];2012年
8 熊伟丽;徐保国;;单个粒子收敛中心随机摄动的粒子群算法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
9 马向阳;陈琦;;以粒子群算法求解买卖双方存货主从对策[A];第十二届中国管理科学学术年会论文集[C];2010年
10 赵磊;;基于粒子群算法求解多目标函数优化问题[A];第二十一届中国(天津)’2007IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2007年
中国博士学位论文全文数据库 前10条
1 王芳;粒子群算法的研究[D];西南大学;2006年
2 安镇宙;家庭粒子群算法及其奇偶性与收敛性分析[D];云南大学;2012年
3 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年
4 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年
5 胡成玉;面向动态环境的粒子群算法研究[D];华中科技大学;2010年
6 张静;基于混合离散粒子群算法的柔性作业车间调度问题研究[D];浙江工业大学;2014年
7 张宝;粒子群算法及其在卫星舱布局中的应用研究[D];大连理工大学;2007年
8 刘宏达;粒子群算法的研究及其在船舶工程中的应用[D];哈尔滨工程大学;2008年
9 杨轻云;约束满足问题与调度问题中离散粒子群算法研究[D];吉林大学;2006年
10 冯琳;改进多目标粒子群算法的研究及其在电弧炉供电曲线优化中的应用[D];东北大学;2013年
中国硕士学位论文全文数据库 前10条
1 张忠伟;结构优化中粒子群算法的研究与应用[D];大连理工大学;2009年
2 李强;基于改进粒子群算法的艾萨炉配料优化[D];昆明理工大学;2015年
3 付晓艳;基于粒子群算法的自调节隶属函数模糊控制器设计[D];河北联合大学;2014年
4 余汉森;粒子群算法的自适应变异研究[D];南京信息工程大学;2015年
5 梁计锋;基于改进粒子群算法的交通控制算法研究[D];长安大学;2015年
6 杨伟;基于粒子群算法的氧乐果合成过程建模研究[D];郑州大学;2015年
7 李程;基于粒子群算法的AS/RS优化调度方法研究[D];陕西科技大学;2015年
8 樊伟健;基于混合混沌粒子群算法求解变循环发动机数学模型问题[D];山东大学;2015年
9 陈百霞;考虑风电场并网的电力系统无功优化[D];山东大学;2015年
10 戴玉倩;基于混合动态粒子群算法的软件测试数据自动生成研究[D];江西理工大学;2015年
本文关键词:多策略融合粒子群算法及其收敛性分析,,由笔耕文化传播整理发布。
本文编号:482501
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/482501.html