剪切波弹性成像技术评价乳腺良恶性肿块的临床研究
本文选题:乳腺肿块 切入点:常规超声 出处:《山西医科大学》2017年硕士论文
【摘要】:目的:探讨剪切波弹性成像技术(SWE)与BI-RADS分类结合鉴别乳腺良恶性病变的价值。方法:对87例患者中最终获取病理结果的121个乳腺肿块作为研究对象,其中包括男性2例(各1个病灶),女性85例(119个病灶)。术前对患者均行常规超声检查,观察及二维图像特征并对其进行BI-RADS分类,然后对病灶进行SWE检查,测量肿块内部组织和肿块周边组织的各个弹性模量参数SD、Emax、Eratio、Emean、Emin,同时观察并且记录病灶的彩色弹性模式分类,并计算出各个弹性模量参数的诊断最佳阈值。结果:(1)病理结果为乳腺病灶良性89个,恶性32个,常规超声下肿块在其形态和方位、边缘和内部及后方的回声特点、钙化和肿块内部及周边血流信号方面差异均具有统计学意义。(2)SWE下乳腺恶性肿块内部及周边组织的弹性模量参数SD、Emean、Emax、Eratio大于良性肿块(P0.001)。肿块内部及周边组织的弹性模量参数Emax有最佳的ROC曲线下面积,分别为0.911、0.941,其诊断阈值分别取78.7Kpa和84.2Kpa时,诊断性能最佳。(3)SWE下乳腺恶性病灶的大小大于常规超声,并且与常规超声相比更接近组织学大小。彩色弹性模式分类的最佳诊断界点为模式2、3。(4)常规超声BI-RADS分类联合肿块周边组织Emax及SWE彩色弹性模式诊断性能最佳,敏感度为97.8%,特异度为88.7%,诊断性能相比BI-RADS分类增加,诊断特异性升高。结论:SWE弹性模量参数及彩色弹性模式分类可以为评价乳腺肿块的良恶性补充新的诊断参数,其中肿块周边组织的弹性模量参数Emax及肿块的彩色弹性模式与常规超声BI-RADS分类结合诊断性能最佳,提供了新的诊断依据。
[Abstract]:Objective: to evaluate the value of combining shear wave elastography with BI-RADS classification in differentiating benign and malignant breast lesions. Methods: 121 breast masses with final pathological results were studied in 87 patients. There were 2 males (1 focus each) and 85 females (119 lesions). All the patients were examined by conventional ultrasound before operation, the features of two-dimensional images were observed and classified by BI-RADS, then the lesions were examined by SWE. The elastic modulus parameters of the inner tissue of the tumor and the surrounding tissue of the tumor were measured, and the color elastic model classification of the lesions was observed and recorded. The optimal diagnostic threshold of each elastic modulus parameter was calculated. Results the pathological results were 89 benign and 32 malignant breast lesions. The shape and orientation of the masses, the echo characteristics of the edges and the interior and the rear of the masses under conventional ultrasound were obtained. There were significant differences in calcification and blood flow signal in and around the tumor. Under SWE, the elastic modulus parameters of breast malignant mass were higher than that of benign tumor (P 0.001). The elastic modulus of the inner and peripheral tissues of the tumor was higher than that of the benign tumor. The elastic modulus of the inner and peripheral tissues of the malignant breast tumor was higher than that of the benign tumor. The parameter Emax has the best area under the ROC curve, When the diagnostic threshold was taken from 78.7Kpa and 84.2Kpa, the size of malignant breast lesions under the best diagnostic performance was larger than that of conventional ultrasound. Compared with conventional ultrasound, it is closer to histological size. The best diagnostic threshold for color elastic mode classification is mode 2 / 3. 4) conventional BI-RADS combined with Emax and SWE color elastic mode has the best diagnostic performance. The sensitivity is 97.8 and the specificity is 88.7. Compared with BI-RADS classification, the diagnostic performance is higher and the diagnostic specificity is higher. Conclusion the elastic modulus parameter and color elastic model classification can be used to evaluate benign and malignant breast masses with new diagnostic parameters. The diagnostic performance of Emax and color elastic model combined with conventional ultrasonic BI-RADS classification is the best, which provides a new diagnostic basis.
【学位授予单位】:山西医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R445.1;R737.9
【参考文献】
相关期刊论文 前10条
1 张广凤;李琳;王凯;孙夕林;申宝忠;;磁共振成像对乳腺肿瘤的诊断价值[J];现代生物医学进展;2015年05期
2 崔可飞;司彩凤;付超;;剪切波新算法在乳腺实性结节良恶性诊断中的应用[J];中国超声医学杂志;2014年05期
3 陈晓燕;康春松;薛继平;史凯玲;冯婷华;;剪切波弹性成像鉴别乳腺良恶性肿瘤的价值[J];中华临床医师杂志(电子版);2014年02期
4 黄浪;朱才义;;实时剪切波弹性成像的临床应用进展[J];临床超声医学杂志;2013年07期
5 冯卉;李俊来;黄炎;史宪全;万文博;唐杰;;剪切波弹性模量联合BI-RADS分级定量诊断乳腺结节良恶性的价值[J];解放军医药杂志;2013年05期
6 史宪全;李俊来;;超声弹性成像技术诊断乳腺疾病的研究进展[J];中华医学超声杂志(电子版);2013年03期
7 张倩倩;王学梅;李银燕;耿晶;张义侠;李响;康姝;;剪切波弹性成像在乳腺良恶性病变鉴别诊断中的价值[J];中国临床医学影像杂志;2012年06期
8 王立平;蒋天安;杨琛;时开元;刘俊平;;乳腺良性结节超声BI-RADS分级的可靠性及其影响因素分析[J];中华超声影像学杂志;2011年04期
9 黄炎;李俊来;王知力;万文博;贾红;苏莉;温朝阳;唐杰;;实时剪切波弹性成像定量评价乳腺良恶性病变[J];中国医学影像技术;2011年03期
10 徐光炜;胡永f;阚秀;;中国10万妇女乳腺癌筛查初探[J];中国肿瘤;2010年09期
,本文编号:1671236
本文链接:https://www.wllwen.com/linchuangyixuelunwen/1671236.html