Develop New of Efficient Catalysts for Hydrodesulphurization
发布时间:2022-11-11 22:37
Hydrodesulphurisation is an important part of the hydrotreating process. More stringent regulations on the quality of fuels bring new requirements to the catalytic processes. The removal of sulphur has become a key issue in the oil refining and this work aims to address several aspects of the process.Current hydrotreatment catalysts are unable to effectively remove theses impurities in sufficient quantities to meet government regulation. The goal of this research is to develop more effective hyd...
【文章页数】:102 页
【学位级别】:硕士
【文章目录】:
ABSTRACT
CHAPTER 1 LITERATURE REVIEW
1.1 Introduction
1.1.1 Hydrotreating of Refinery Streams
1.1.2 Different S-compounds Encountered in HDS
1.1.3 S-compounds in Refinery Streams
1.1.4 Reaction Pathway of Model Compound Thiophene (Ts)
1.1.5 Conventional HDS
1.1.6 The S-compounds in Diesel Oil Fractions:Nature and Reactivity
1.1.7 The Mechanism of HDS
1.2 IMPORTANCE OF HDS
1.3 CLASSIFICATION OF DESULFURIZATION TECHNOLOGIES
1.4 STATE OF ART FOR CATALYTIC AND ALTERNATIVE HDS PROCESSES
1.5 DIFFERENT CATALYSTS
1.5.1 Structure of the Oxide Catalyst
1.5.2 Structure of the Sulfide Catalyst
1.5.3 Review of Catalysts
1.5.4 Comparison of CoMo/Al_2O_3 with NiMo/Al_2O_3 for HDS of 4,6-DMDBT
1.6 AIM OF THE WORK
CHAPTER 2 EXPERIMENTAL METHOD
2.1 MATERIALS USED
2.2 CATALYST CHARACTERIZATION TECHNIQUES
2.2.1 Thermogravimetric Analysis (TGA)
2.2.2 Surface Area and Porosity Analysis
2.2.3 Powder X-ray Diffraction
2.2.4 Scanning Electron Microscopy (SEM)
2.3 HDS ACTIVITY MEASUREMENT
2.3.1 Reaction Studies
2.3.1.1 The Advantages of Microactivity-Reference Units
2.3.1.2 The Disadvantages of Microactivity-Reference Units
2.3.1.3 Calibration of Hydrogen Gas
2.3.1.4 Calibration of Ts
2.3.2 Set-up of Gas Chromatography (GC)
2.3.2.1 GC Calibration of Ts
2.3.3 Set-up of Total Sulphur Analyser
2.3.3.1 Total Sulphur Analyser Calibration
CHAPTER 3 PREPARATION AND CHARACTERIZATION OF CATALYST
3.1 PREPARATION OF CATALYSTS
3.1.1 Preparation NiMo/γ-Al_2O_3 Supported Catalyst
3.1.2. Preparation RuNiMo/γ-Al_2O_3 Supported Catalyst
3.1.3 Preparation LaNiMo/γ-Al_2O_3 Supported Catalyst
3.1.4 Preparation CeNiMo/γ-Al_2O_3 Supported Catalyst
3.2 CATALYST CHARACTERIZATION
3.2.1 Thermogravimetric Analysis(TGA)
3.2.2 Surface Area and Porosity Studies
3.2.2.1 BET of the Catalyst NiMo/γ-Al_2O_3
3.2.2.2 BET of the Catalyst RuNiMo/γ-Al_2O_3
3.2.2.3 BET of the Catalyst LaNiMo/γ-Al_2O_3
3.2.2.4 BET of the Catalyst CeNiMo/γ-Al_2O_3
3.2.3 Powder X-ray Diffraction
3.2.4 Scanning Electron Microscopy(SEM)
3.2.4.1 SEM of the Catalyst NiMo/γ-Al_2O_3
3.2.4.2 SEM of the Catalyst RuNiMo/γ-Al_2O_3
3.2.4.3 SEM of the Catalyst LaNiMo/γ-Al_2O_3
3.2.4.4 SEM of the Catalyst CeNiMo/γ-Al_2O_3
CHAPTER 4 HDS EXPERIMENTS EVALUATION
4.1 HDS oF TS OVER NIMo/Γ-AL_2O_3
4.2 HDS OF TS OVER RUNIMO/Γ-AL_2O_3
4.3 HDS OF TS OVER LANIMO/Γ-AL_2O_3
4.4 HDS OF TS OVER CENIMO/Γ-AL_2O_3
4.5 ACTIVITY OF THE CATALYSTS AT VARIABLE TEMPERATURES WITH THE TIME-ON-STREAM
4.5.1 Activity of the Catalysts After 60 min of Time-on-Stream Under Variable Temperatures
4.5.1.1 Activity of Catalyst(A)at Temperature 250℃
4.5.1.2 Activity of Catalyst(A)at Temperature 300℃
4.5.1.3 Activity of Catalyst(A)at Temperature 350℃
4.5.1.4. Activity of Catalyst(B)at Temperature 250℃
4.5.1.5 Activity of Catalyst(B)at Temperature 300℃
4.5.1.6 Activity of Catalyst(B)at Temperature 350℃
4.5.1.7 Activity of Catalyst(C)at Temperature 250℃
4.5.1.8 Activity ofCatalyst(C)at Temperature 300℃
4.5.1.9 Activity of Catalyst(C)at Temperature 350℃
4.5.1.10 Activity of Catalyst(D)at Temperature 250℃
4.5.1.11 Activity of Catalyst(D)at Temperature 300℃
4.5.1.12 Activity of Catalyst(D)at Temperature 350℃
4.5.2 Activity of the Catalysts After 120 min of Time-on-Stream Under Variable Temperatures
4.5.2.1 Activity of Catalyst(A)at Temperature 250℃
4.5.2.2 Activity of Catalyst(A)at Temperature 300℃
4.5.2.3 Activity of Catalyst(A)at Temperature 350℃
4.5.2.4 Activity of Catalyst(B)at Temperature 250℃
4.5.2.5 Activity of Catalyst(B)at Temperature 300℃
4.5.2.6 Activity of Catalyst(B)at Temperature 350℃
4.5.2.7 Activity of Catalyst(C)at Temperature 250℃
4.5.2.8 Activity of Catalyst(C)at Temperature 300℃
4.5.2.9 Activity of Catalyst(C)at Temperature 350℃
4.5.2.10 Activity of Catalyst(D)at Temperature 250℃
4.5.2.11 Activity of Catalyst(D)at Temperature 300℃
4.5.2.12 Activity of Catalyst(D)at Temperature 350℃
4.5.3 Activity of the Catalysts After 180 min of Time-on-Stream Under Variable Temperatures
4.5.3.1 Activity of Catalyst(A)at Temperature 250℃
4.5.3.2 Activity of Catalyst(A)at Temperature 300℃
4.5.3.3 Activity of Catalyst(A)at Temperature 350℃
4.5.3.4 Activity of Catalyst(B)at Temperature 250℃
4.5.3.5 Activity of Catalyst(B)at Temperature 300℃
4.5.3.6 Activity of Catalyst(B)at Temperature 350℃
4.5.3.7 Activity of Catalyst(C)at Temperature 250℃
4.5.3.8 Activity of Catalyst(C)at Temperature 300℃
4.5.3.9 Activity of Catalyst(C)at Temperature 350℃
4.5.3.10 Activity of Catalyst(D)at Temperature 250℃
4.5.3.11 Accivity of Catalyst(D)at Temperature 300℃
4.5.3.12 Activity of Catalyst(D)at Temperature 350℃
4.5.4 Activity of the Catalysts After 240 min of Time-on-Stream Under Variable Temperatures
4.5.4.1 Activity of Catalyst(A)at Temperature 250℃
4.5.4.2 Activity of Calalyst(A)at Temperature 300℃
4.5.4.3 Activity of Catalyst(A)at Temperature 350℃
4.5.4.4 Activity of Catalyst(B)at Temperature 250℃
4.5.4.5 Activity of Catalyst(B)at Temperature 300℃
4.5.4.6 Activity of Catalyst(B)at Temperature 350℃
4.5.4.7 Activity of Catalyst(C)at Temperature 250℃
4.5.4.8 Activity of Catalyst(C)at Temperature 300℃
4.5.4.9 Activity of Catalyst(C)at Temperature 350℃
4.5.4.10 Activity of Catalyst(D)at Temperature 250℃
4.5.4.11 Activity of Catalyst(D)at Teperature 300℃
4.5.4.12 Activity of Catalyst(D)at Temperature 350℃
4.6 CONCLUSION
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS
5.1 CONCLUSION
5.2 RECOMMENDATIONS
REFERENCES
ACKNOWLEDGEMENTS
北京化工大学硕士研究生学位论文答辩委员会决议书
本文编号:3705876
【文章页数】:102 页
【学位级别】:硕士
【文章目录】:
ABSTRACT
CHAPTER 1 LITERATURE REVIEW
1.1 Introduction
1.1.1 Hydrotreating of Refinery Streams
1.1.2 Different S-compounds Encountered in HDS
1.1.3 S-compounds in Refinery Streams
1.1.4 Reaction Pathway of Model Compound Thiophene (Ts)
1.1.5 Conventional HDS
1.1.6 The S-compounds in Diesel Oil Fractions:Nature and Reactivity
1.1.7 The Mechanism of HDS
1.2 IMPORTANCE OF HDS
1.3 CLASSIFICATION OF DESULFURIZATION TECHNOLOGIES
1.4 STATE OF ART FOR CATALYTIC AND ALTERNATIVE HDS PROCESSES
1.5 DIFFERENT CATALYSTS
1.5.1 Structure of the Oxide Catalyst
1.5.2 Structure of the Sulfide Catalyst
1.5.3 Review of Catalysts
1.5.4 Comparison of CoMo/Al_2O_3 with NiMo/Al_2O_3 for HDS of 4,6-DMDBT
1.6 AIM OF THE WORK
CHAPTER 2 EXPERIMENTAL METHOD
2.1 MATERIALS USED
2.2 CATALYST CHARACTERIZATION TECHNIQUES
2.2.1 Thermogravimetric Analysis (TGA)
2.2.2 Surface Area and Porosity Analysis
2.2.3 Powder X-ray Diffraction
2.2.4 Scanning Electron Microscopy (SEM)
2.3 HDS ACTIVITY MEASUREMENT
2.3.1 Reaction Studies
2.3.1.1 The Advantages of Microactivity-Reference Units
2.3.1.2 The Disadvantages of Microactivity-Reference Units
2.3.1.3 Calibration of Hydrogen Gas
2.3.1.4 Calibration of Ts
2.3.2 Set-up of Gas Chromatography (GC)
2.3.2.1 GC Calibration of Ts
2.3.3 Set-up of Total Sulphur Analyser
2.3.3.1 Total Sulphur Analyser Calibration
CHAPTER 3 PREPARATION AND CHARACTERIZATION OF CATALYST
3.1 PREPARATION OF CATALYSTS
3.1.1 Preparation NiMo/γ-Al_2O_3 Supported Catalyst
3.1.2. Preparation RuNiMo/γ-Al_2O_3 Supported Catalyst
3.1.3 Preparation LaNiMo/γ-Al_2O_3 Supported Catalyst
3.1.4 Preparation CeNiMo/γ-Al_2O_3 Supported Catalyst
3.2 CATALYST CHARACTERIZATION
3.2.1 Thermogravimetric Analysis(TGA)
3.2.2 Surface Area and Porosity Studies
3.2.2.1 BET of the Catalyst NiMo/γ-Al_2O_3
3.2.2.2 BET of the Catalyst RuNiMo/γ-Al_2O_3
3.2.2.3 BET of the Catalyst LaNiMo/γ-Al_2O_3
3.2.2.4 BET of the Catalyst CeNiMo/γ-Al_2O_3
3.2.3 Powder X-ray Diffraction
3.2.4 Scanning Electron Microscopy(SEM)
3.2.4.1 SEM of the Catalyst NiMo/γ-Al_2O_3
3.2.4.2 SEM of the Catalyst RuNiMo/γ-Al_2O_3
3.2.4.3 SEM of the Catalyst LaNiMo/γ-Al_2O_3
3.2.4.4 SEM of the Catalyst CeNiMo/γ-Al_2O_3
CHAPTER 4 HDS EXPERIMENTS EVALUATION
4.1 HDS oF TS OVER NIMo/Γ-AL_2O_3
4.2 HDS OF TS OVER RUNIMO/Γ-AL_2O_3
4.3 HDS OF TS OVER LANIMO/Γ-AL_2O_3
4.4 HDS OF TS OVER CENIMO/Γ-AL_2O_3
4.5 ACTIVITY OF THE CATALYSTS AT VARIABLE TEMPERATURES WITH THE TIME-ON-STREAM
4.5.1 Activity of the Catalysts After 60 min of Time-on-Stream Under Variable Temperatures
4.5.1.1 Activity of Catalyst(A)at Temperature 250℃
4.5.1.2 Activity of Catalyst(A)at Temperature 300℃
4.5.1.3 Activity of Catalyst(A)at Temperature 350℃
4.5.1.4. Activity of Catalyst(B)at Temperature 250℃
4.5.1.5 Activity of Catalyst(B)at Temperature 300℃
4.5.1.6 Activity of Catalyst(B)at Temperature 350℃
4.5.1.7 Activity of Catalyst(C)at Temperature 250℃
4.5.1.8 Activity ofCatalyst(C)at Temperature 300℃
4.5.1.9 Activity of Catalyst(C)at Temperature 350℃
4.5.1.10 Activity of Catalyst(D)at Temperature 250℃
4.5.1.11 Activity of Catalyst(D)at Temperature 300℃
4.5.1.12 Activity of Catalyst(D)at Temperature 350℃
4.5.2 Activity of the Catalysts After 120 min of Time-on-Stream Under Variable Temperatures
4.5.2.1 Activity of Catalyst(A)at Temperature 250℃
4.5.2.2 Activity of Catalyst(A)at Temperature 300℃
4.5.2.3 Activity of Catalyst(A)at Temperature 350℃
4.5.2.4 Activity of Catalyst(B)at Temperature 250℃
4.5.2.5 Activity of Catalyst(B)at Temperature 300℃
4.5.2.6 Activity of Catalyst(B)at Temperature 350℃
4.5.2.7 Activity of Catalyst(C)at Temperature 250℃
4.5.2.8 Activity of Catalyst(C)at Temperature 300℃
4.5.2.9 Activity of Catalyst(C)at Temperature 350℃
4.5.2.10 Activity of Catalyst(D)at Temperature 250℃
4.5.2.11 Activity of Catalyst(D)at Temperature 300℃
4.5.2.12 Activity of Catalyst(D)at Temperature 350℃
4.5.3 Activity of the Catalysts After 180 min of Time-on-Stream Under Variable Temperatures
4.5.3.1 Activity of Catalyst(A)at Temperature 250℃
4.5.3.2 Activity of Catalyst(A)at Temperature 300℃
4.5.3.3 Activity of Catalyst(A)at Temperature 350℃
4.5.3.4 Activity of Catalyst(B)at Temperature 250℃
4.5.3.5 Activity of Catalyst(B)at Temperature 300℃
4.5.3.6 Activity of Catalyst(B)at Temperature 350℃
4.5.3.7 Activity of Catalyst(C)at Temperature 250℃
4.5.3.8 Activity of Catalyst(C)at Temperature 300℃
4.5.3.9 Activity of Catalyst(C)at Temperature 350℃
4.5.3.10 Activity of Catalyst(D)at Temperature 250℃
4.5.3.11 Accivity of Catalyst(D)at Temperature 300℃
4.5.3.12 Activity of Catalyst(D)at Temperature 350℃
4.5.4 Activity of the Catalysts After 240 min of Time-on-Stream Under Variable Temperatures
4.5.4.1 Activity of Catalyst(A)at Temperature 250℃
4.5.4.2 Activity of Calalyst(A)at Temperature 300℃
4.5.4.3 Activity of Catalyst(A)at Temperature 350℃
4.5.4.4 Activity of Catalyst(B)at Temperature 250℃
4.5.4.5 Activity of Catalyst(B)at Temperature 300℃
4.5.4.6 Activity of Catalyst(B)at Temperature 350℃
4.5.4.7 Activity of Catalyst(C)at Temperature 250℃
4.5.4.8 Activity of Catalyst(C)at Temperature 300℃
4.5.4.9 Activity of Catalyst(C)at Temperature 350℃
4.5.4.10 Activity of Catalyst(D)at Temperature 250℃
4.5.4.11 Activity of Catalyst(D)at Teperature 300℃
4.5.4.12 Activity of Catalyst(D)at Temperature 350℃
4.6 CONCLUSION
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS
5.1 CONCLUSION
5.2 RECOMMENDATIONS
REFERENCES
ACKNOWLEDGEMENTS
北京化工大学硕士研究生学位论文答辩委员会决议书
本文编号:3705876
本文链接:https://www.wllwen.com/projectlw/hxgylw/3705876.html
最近更新
教材专著