持续氮输入对湿地土壤除氮能力及温室气体排放的影响研究
发布时间:2021-10-26 14:22
硝酸盐污染已成为全球主要的环境问题。近几年,河岸湿地被认为是潜在的水质净化系统。随着人为和自然硝酸盐负荷的增加,河岸湿地的CO2、CH4、N2O的通量会发生变化,进而影响温室气体平衡。本研究从有富氮径流汇入的河岸湿地采集了不同的土壤样本,研究了不同样本硝酸盐去除以及温室气体排放的差异,探讨了土壤理化因子对受纳水体硝酸盐的去除以及向大气排放温室气体的影响。具体而言,本研究旨在(ⅰ)确定含氮河岸湿地不同植被类型场地采集的原状土壤柱硝酸盐去除和N2O排放的空间变化和过程,(ⅱ)测定连续输入硝酸盐溶液的完整河岸湿地土壤柱的温室气体排放,以及(ⅲ)评估水位波动和硝酸盐浓度水平对土壤表面和河岸淡水湿地CO2和CH4气体排放的影响。在实验室条件下,以不同植物种类采集的原状土壤柱(小叶章、芦苇、鼓囊苔草和漂筏苔草),进行富硝酸盐水处理,模拟地表水和地下水通过土壤,土柱被置于不同的水位(高于土壤表面5cm,低于土壤水面10cm,低于土壤水面-20cm)和不同的硝酸盐浓度水平。同时收集水和气体样本,分别用于硝酸盐、铵根离子、CO2、CH4和N2O的分析。本研究发现,土壤柱从入口到出口的浓度显著降低。近98...
【文章来源】:东北林业大学黑龙江省 211工程院校 教育部直属院校
【文章页数】:139 页
【学位级别】:博士
【文章目录】:
List of acronyms
Abstract
摘要
1 Introduction
1.1 Research background
1.2 Literature review
1.2.1 Nitrate pollution
1.2.2 Source of NO_3 pollution
1.2.3 Attenuation of NO_3 in the riparian wetlands
1.2.4 Processes associated with NO_3 removal in riparian wetlands
1.2.5 Main GHG species and their abundances in the atmosphere
1.2.6 Greenhouse gas emissions from wetland soil
1.2.7 Factors influencing NO_3 removal and GHG emissions from the soil
1.3 Research goaland objectives
1.4 Justification of the study
1.5 Thesis Outline
2 Materials and Methods
2.1 Description of the study area
2.2 Field soil sampling procedure
2.3 Laboratory soil analysis
2.4 Laboratory experimental designs
2.5 Gas sampling and analysis
3 Spatial variability and processes involved in NO_3 removal in intact soilcolumns collected from nitrogenous loaded riparian wetland,Northeast China 25
3.1 introduction
3.2 Materials and methods
3.2.1 Soil sampling
3.2.2 Laboratory experiment setup
3.2.3 Water sampling
3.3 Statistical analyses
3.4 Results
3.4.1 Soil characteristics
3.4.2 Reduction of NO_3 in different soil depth
3.4.3 Temporal variation of NO_3 concentration in different soil depth
3.5 Discussion
3.5.1 Soil characteristics
3.5.2 Processes involved in NO_3 removal and NH_4~+ production in wetland soil
3.5.3 Spatial dynamics of NO_3 removal in wetland soil
4 Greenhouse gas emissions from intact riparian wetland soil columnscontinuously loaded with nitrate solution:a laboratory microcosm study
4.1 Introduction
4.2 Materials and methods
4.2.1Study site and sampling procedure
4.2.2 Experiment setup and measurement methods
4.2.3 Gas sampling
4.2.4 Water sampling
4.2.5 Global warming potential (GWP)
4.3 Statistical analyses
4.4 Results
4.4.1 Nitrate concentration in soil water
4.4.2 Gas emission from intact soil columns
4.4.3 Globalwarming potential (GWP)
4.5 Discussion
4.5.1 Nitrate concentration in soil water
4.5.2 Greenhouse gases fluxes from soilcolumn
4.5.3 Global warming potential (GWP)
5 Effect of water level fluctuation and nitrate concentration on soil-surface CO_2,CH4 and N_2O emissions from riparian freshwater marsh wetland
5.1 Introduction
5.2 Materials and methods
5.2.1 Study area
5.2.2 Soil sampling
5.2.3 Laboratory experiment setup and measurement methods
5.2.4 Measurements of CO_2, CH4 and N_2O fluxes
5.3 Data analysis
5.4 Results
5.4.1 Carbon dioxide emission at different water levels
5.4.2 Carbon dioxide emission at different NO_3~- concentration levels
5.4.3 Methane fluxes at different water levels
5.4.4 Methane fluxes at different NO_3~- concentration levels
5.4.5 Effect of water table level and NO_3~- concentration levels on N_2O fluxes
5.4.6 Relationships between GHGs fluxes and soil environmental variables
5.5 Discussion
5.5.1 Natural CO_2 emission in comparison with other studies
5.5.2 Influence of water level on CO_2 emission
5.5.3 Influence of NO_3~- concentration on CO_2 emission
5.5.4 Influence of water level on CH_4 fluxes
5.5.5 Influence of NO_3~- concentration on CH4 fluxes
5.5.6 Effect of water level fluctuation and NO_3~- concentration levels on N_2O fluxes
5.5.7 Relationships between GHGs fluxes and soil environmental variables
6 Syntheses and conclusion
6.1 Overview
6.2 Further research
7 References
Papers published during the Ph.D study period
Acknowledgements
【参考文献】:
期刊论文
[1]基于GIS的华北高产粮区地下水硝态氮含量时空变异特征[J]. 陈淑峰,李帷,胡克林,吴文良,褚兆辉,毛文峰. 环境科学. 2009(12)
[2]河北平原地下水质变及农药化肥施用量变化影响[J]. 张光辉,刘中培,连英立,严明疆,王金哲. 南水北调与水利科技. 2009(02)
[3]1954年以来三江平原土地利用变化及驱动力[J]. 宋开山,刘殿伟,王宗明,张柏,金翠,李方,刘焕军. 地理学报. 2008(01)
[4]三江平原典型湿地流域水文情势变化过程及其影响因素分析[J]. 刘红玉,李兆富. 自然资源学报. 2005(04)
[5]Spatial and Temporal Variability of N, P and K Balances for Agroecosystems in China[J]. SHEN Run-Ping1,2, SUN Bo1,2 and ZHAO Qi-Guo1 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China). Department of Spatial Information Science, Nanjing University of Information Science and Technology, Nanjing 210044 (China). Pedosphere. 2005(03)
[6]Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain,China[J]. SONG Changchun1,2, YAN Baixing1, WANG Yuesi2, WANG Yiyong1, LOU Yanjing1 & ZHAO Zhichun1 1. Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130012, China; 2. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100101, China Correspondence should be addressed to Song Changchun (e-mail: Songcc@mail.neigae.ac.cn). Chinese Science Bulletin. 2003(24)
本文编号:3459663
【文章来源】:东北林业大学黑龙江省 211工程院校 教育部直属院校
【文章页数】:139 页
【学位级别】:博士
【文章目录】:
List of acronyms
Abstract
摘要
1 Introduction
1.1 Research background
1.2 Literature review
1.2.1 Nitrate pollution
1.2.2 Source of NO_3 pollution
1.2.3 Attenuation of NO_3 in the riparian wetlands
1.2.4 Processes associated with NO_3 removal in riparian wetlands
1.2.5 Main GHG species and their abundances in the atmosphere
1.2.6 Greenhouse gas emissions from wetland soil
1.2.7 Factors influencing NO_3 removal and GHG emissions from the soil
1.3 Research goaland objectives
1.4 Justification of the study
1.5 Thesis Outline
2 Materials and Methods
2.1 Description of the study area
2.2 Field soil sampling procedure
2.3 Laboratory soil analysis
2.4 Laboratory experimental designs
2.5 Gas sampling and analysis
3 Spatial variability and processes involved in NO_3 removal in intact soilcolumns collected from nitrogenous loaded riparian wetland,Northeast China 25
3.1 introduction
3.2 Materials and methods
3.2.1 Soil sampling
3.2.2 Laboratory experiment setup
3.2.3 Water sampling
3.3 Statistical analyses
3.4 Results
3.4.1 Soil characteristics
3.4.2 Reduction of NO_3 in different soil depth
3.4.3 Temporal variation of NO_3 concentration in different soil depth
3.5 Discussion
3.5.1 Soil characteristics
3.5.2 Processes involved in NO_3 removal and NH_4~+ production in wetland soil
3.5.3 Spatial dynamics of NO_3 removal in wetland soil
4 Greenhouse gas emissions from intact riparian wetland soil columnscontinuously loaded with nitrate solution:a laboratory microcosm study
4.1 Introduction
4.2 Materials and methods
4.2.1Study site and sampling procedure
4.2.2 Experiment setup and measurement methods
4.2.3 Gas sampling
4.2.4 Water sampling
4.2.5 Global warming potential (GWP)
4.3 Statistical analyses
4.4 Results
4.4.1 Nitrate concentration in soil water
4.4.2 Gas emission from intact soil columns
4.4.3 Globalwarming potential (GWP)
4.5 Discussion
4.5.1 Nitrate concentration in soil water
4.5.2 Greenhouse gases fluxes from soilcolumn
4.5.3 Global warming potential (GWP)
5 Effect of water level fluctuation and nitrate concentration on soil-surface CO_2,CH4 and N_2O emissions from riparian freshwater marsh wetland
5.1 Introduction
5.2 Materials and methods
5.2.1 Study area
5.2.2 Soil sampling
5.2.3 Laboratory experiment setup and measurement methods
5.2.4 Measurements of CO_2, CH4 and N_2O fluxes
5.3 Data analysis
5.4 Results
5.4.1 Carbon dioxide emission at different water levels
5.4.2 Carbon dioxide emission at different NO_3~- concentration levels
5.4.3 Methane fluxes at different water levels
5.4.4 Methane fluxes at different NO_3~- concentration levels
5.4.5 Effect of water table level and NO_3~- concentration levels on N_2O fluxes
5.4.6 Relationships between GHGs fluxes and soil environmental variables
5.5 Discussion
5.5.1 Natural CO_2 emission in comparison with other studies
5.5.2 Influence of water level on CO_2 emission
5.5.3 Influence of NO_3~- concentration on CO_2 emission
5.5.4 Influence of water level on CH_4 fluxes
5.5.5 Influence of NO_3~- concentration on CH4 fluxes
5.5.6 Effect of water level fluctuation and NO_3~- concentration levels on N_2O fluxes
5.5.7 Relationships between GHGs fluxes and soil environmental variables
6 Syntheses and conclusion
6.1 Overview
6.2 Further research
7 References
Papers published during the Ph.D study period
Acknowledgements
【参考文献】:
期刊论文
[1]基于GIS的华北高产粮区地下水硝态氮含量时空变异特征[J]. 陈淑峰,李帷,胡克林,吴文良,褚兆辉,毛文峰. 环境科学. 2009(12)
[2]河北平原地下水质变及农药化肥施用量变化影响[J]. 张光辉,刘中培,连英立,严明疆,王金哲. 南水北调与水利科技. 2009(02)
[3]1954年以来三江平原土地利用变化及驱动力[J]. 宋开山,刘殿伟,王宗明,张柏,金翠,李方,刘焕军. 地理学报. 2008(01)
[4]三江平原典型湿地流域水文情势变化过程及其影响因素分析[J]. 刘红玉,李兆富. 自然资源学报. 2005(04)
[5]Spatial and Temporal Variability of N, P and K Balances for Agroecosystems in China[J]. SHEN Run-Ping1,2, SUN Bo1,2 and ZHAO Qi-Guo1 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China). Department of Spatial Information Science, Nanjing University of Information Science and Technology, Nanjing 210044 (China). Pedosphere. 2005(03)
[6]Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain,China[J]. SONG Changchun1,2, YAN Baixing1, WANG Yuesi2, WANG Yiyong1, LOU Yanjing1 & ZHAO Zhichun1 1. Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130012, China; 2. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100101, China Correspondence should be addressed to Song Changchun (e-mail: Songcc@mail.neigae.ac.cn). Chinese Science Bulletin. 2003(24)
本文编号:3459663
本文链接:https://www.wllwen.com/projectlw/qxxlw/3459663.html