圆柱型集热器腔体优化设计及光学性能分析
发布时间:2021-06-08 23:09
为了提高碟式太阳能热发电系统中圆柱型集热器的光学性能,文章利用Tracepro光学软件建立了圆柱型集热器-聚光器仿真模型,并通过数值模拟分析了当圆柱型集热器采光口平面与聚光器焦点之间的距离发生变化时,采光口平面上能流密度的分布情况,以确定圆柱型集热器的最佳位置,此外,还分析了锥腔径比对圆柱型集热器光学性能的影响。分析结果表明:采光口平面距离聚光器焦点越近,采光口平面上能流密度的分布趋势越趋近于高斯分布,即越接近实际分布情况;锥腔径比越大,圆柱型集热器的光学性能越好,当锥腔径比为0.95时,圆柱型集热器的光学效率为75.3%,比锥腔径比为0.30时高出14.1%。
【文章来源】:可再生能源. 2018,36(12)北大核心
【文章页数】:7 页
【部分图文】:
当聚光器焦点与圆盘之间的距离发(c)
布。这主要是由于圆盘遮挡了碟式聚光器的中心,使得碟式聚光器反射到圆盘上的太阳光线的数目随之减少,并且圆盘与聚光器焦点之间的距离越大,遮挡效果越明显。2.3焦平面温度测量基于实验室现有的条件,利用热电偶对聚光器焦平面温度进行测量,由能量守恒定律和普朗克定律可知,太阳辐射能流密度越大,聚光器焦平面温度越高。本文对比分析了聚光器焦平面实际温度与圆盘能流密度仿真结果的分布情况。若聚光器焦平面实际温度的分布趋势与圆盘能流密度仿真结果的分布趋势相一致,均呈现出中心高、四周低的变化趋势,则证明本文的仿真结果符合能量守恒定律和普朗克定律,这为下文集热器的仿真优化设计奠定基础。图3为当圆盘位于碟式聚光器焦点处(焦平面上)时,圆盘表面的温度测量值和能流密度仿真值沿径向的分布情况。圆盘表面温度的测试时间为2017年9月3日,测试地点为呼和浩特,环境温度为26℃,太阳辐照度为800W/m2。由图3可知,圆盘中心的温度较高,并且沿径向温度逐渐降低,这是由于碟式聚光器的焦点是其反射光线的焦点,当圆盘位于蝶式聚光器焦点处时,圆盘中心与蝶式聚光器的焦点相重合,圆盘中心所接收到的太阳光线最多,因此圆盘中心的温度较高。由图3还可看出,自圆盘中心沿着径向方向,能流密度急剧下降,呈现出理想的高斯分布变化趋势。综上可知,圆盘温度的测量值和能流密度仿真值的变化趋势基本一致。该现象符合能量守恒定律和普朗克定律,说明本文模型的仿真结果比较准确。碟式聚光器焦平面温度测量值的云图见图4。
布。这主要是由于圆盘遮挡了碟式聚光器的中心,使得碟式聚光器反射到圆盘上的太阳光线的数目随之减少,并且圆盘与聚光器焦点之间的距离越大,遮挡效果越明显。2.3焦平面温度测量基于实验室现有的条件,利用热电偶对聚光器焦平面温度进行测量,由能量守恒定律和普朗克定律可知,太阳辐射能流密度越大,聚光器焦平面温度越高。本文对比分析了聚光器焦平面实际温度与圆盘能流密度仿真结果的分布情况。若聚光器焦平面实际温度的分布趋势与圆盘能流密度仿真结果的分布趋势相一致,均呈现出中心高、四周低的变化趋势,则证明本文的仿真结果符合能量守恒定律和普朗克定律,这为下文集热器的仿真优化设计奠定基础。图3为当圆盘位于碟式聚光器焦点处(焦平面上)时,圆盘表面的温度测量值和能流密度仿真值沿径向的分布情况。圆盘表面温度的测试时间为2017年9月3日,测试地点为呼和浩特,环境温度为26℃,太阳辐照度为800W/m2。由图3可知,圆盘中心的温度较高,并且沿径向温度逐渐降低,这是由于碟式聚光器的焦点是其反射光线的焦点,当圆盘位于蝶式聚光器焦点处时,圆盘中心与蝶式聚光器的焦点相重合,圆盘中心所接收到的太阳光线最多,因此圆盘中心的温度较高。由图3还可看出,自圆盘中心沿着径向方向,能流密度急剧下降,呈现出理想的高斯分布变化趋势。综上可知,圆盘温度的测量值和能流密度仿真值的变化趋势基本一致。该现象符合能量守恒定律和普朗克定律,说明本文模型的仿真结果比较准确。碟式聚光器焦平面温度测量值的云图见图4。
【参考文献】:
期刊论文
[1]多模型预测函数控制及其在槽式光热发电中的应用[J]. 王湘艳,赵亮,赵大伟,崔晓波,朱凌志,丁佳煜,许昌. 可再生能源. 2017(03)
[2]改进半球形腔式吸热器热性能数值模拟[J]. 王俊杰,田瑞,王亚辉,王召阳. 可再生能源. 2013(05)
[3]抛物碟式太阳能聚光器的聚光特性分析与设计[J]. 王云峰,季杰,何伟,陈海飞. 光学学报. 2012(01)
[4]腔式太阳能吸热器热性能的模拟计算[J]. 方嘉宾,魏进家,董训伟,王跃社. 工程热物理学报. 2009(03)
[5]太阳能热发电技术与系统[J]. 杨敏林,杨晓西,林汝谋,袁建丽. 热能动力工程. 2008(03)
[6]碟式聚光太阳能热发电系统用腔式吸热器热性能分析[J]. 张春平,刘志刚,赵耀华,唐大伟. 上海理工大学学报. 2004(04)
博士论文
[1]太阳能聚光器聚焦光斑能流密度分布的理论与实验研究[D]. 刘颖.哈尔滨工业大学 2008
硕士论文
[1]碟式太阳能热利用系统腔式吸热器光热性能研究及优化[D]. 杜艳秋.内蒙古工业大学 2016
[2]碟式太阳能热发电系统中腔式吸热器光热性能的数值研究及优化[D]. 毛青松.华南理工大学 2012
[3]碟式斯特林太阳能热发电系统的模型构建和优化研究[D]. 何坚.兰州理工大学 2011
本文编号:3219401
【文章来源】:可再生能源. 2018,36(12)北大核心
【文章页数】:7 页
【部分图文】:
当聚光器焦点与圆盘之间的距离发(c)
布。这主要是由于圆盘遮挡了碟式聚光器的中心,使得碟式聚光器反射到圆盘上的太阳光线的数目随之减少,并且圆盘与聚光器焦点之间的距离越大,遮挡效果越明显。2.3焦平面温度测量基于实验室现有的条件,利用热电偶对聚光器焦平面温度进行测量,由能量守恒定律和普朗克定律可知,太阳辐射能流密度越大,聚光器焦平面温度越高。本文对比分析了聚光器焦平面实际温度与圆盘能流密度仿真结果的分布情况。若聚光器焦平面实际温度的分布趋势与圆盘能流密度仿真结果的分布趋势相一致,均呈现出中心高、四周低的变化趋势,则证明本文的仿真结果符合能量守恒定律和普朗克定律,这为下文集热器的仿真优化设计奠定基础。图3为当圆盘位于碟式聚光器焦点处(焦平面上)时,圆盘表面的温度测量值和能流密度仿真值沿径向的分布情况。圆盘表面温度的测试时间为2017年9月3日,测试地点为呼和浩特,环境温度为26℃,太阳辐照度为800W/m2。由图3可知,圆盘中心的温度较高,并且沿径向温度逐渐降低,这是由于碟式聚光器的焦点是其反射光线的焦点,当圆盘位于蝶式聚光器焦点处时,圆盘中心与蝶式聚光器的焦点相重合,圆盘中心所接收到的太阳光线最多,因此圆盘中心的温度较高。由图3还可看出,自圆盘中心沿着径向方向,能流密度急剧下降,呈现出理想的高斯分布变化趋势。综上可知,圆盘温度的测量值和能流密度仿真值的变化趋势基本一致。该现象符合能量守恒定律和普朗克定律,说明本文模型的仿真结果比较准确。碟式聚光器焦平面温度测量值的云图见图4。
布。这主要是由于圆盘遮挡了碟式聚光器的中心,使得碟式聚光器反射到圆盘上的太阳光线的数目随之减少,并且圆盘与聚光器焦点之间的距离越大,遮挡效果越明显。2.3焦平面温度测量基于实验室现有的条件,利用热电偶对聚光器焦平面温度进行测量,由能量守恒定律和普朗克定律可知,太阳辐射能流密度越大,聚光器焦平面温度越高。本文对比分析了聚光器焦平面实际温度与圆盘能流密度仿真结果的分布情况。若聚光器焦平面实际温度的分布趋势与圆盘能流密度仿真结果的分布趋势相一致,均呈现出中心高、四周低的变化趋势,则证明本文的仿真结果符合能量守恒定律和普朗克定律,这为下文集热器的仿真优化设计奠定基础。图3为当圆盘位于碟式聚光器焦点处(焦平面上)时,圆盘表面的温度测量值和能流密度仿真值沿径向的分布情况。圆盘表面温度的测试时间为2017年9月3日,测试地点为呼和浩特,环境温度为26℃,太阳辐照度为800W/m2。由图3可知,圆盘中心的温度较高,并且沿径向温度逐渐降低,这是由于碟式聚光器的焦点是其反射光线的焦点,当圆盘位于蝶式聚光器焦点处时,圆盘中心与蝶式聚光器的焦点相重合,圆盘中心所接收到的太阳光线最多,因此圆盘中心的温度较高。由图3还可看出,自圆盘中心沿着径向方向,能流密度急剧下降,呈现出理想的高斯分布变化趋势。综上可知,圆盘温度的测量值和能流密度仿真值的变化趋势基本一致。该现象符合能量守恒定律和普朗克定律,说明本文模型的仿真结果比较准确。碟式聚光器焦平面温度测量值的云图见图4。
【参考文献】:
期刊论文
[1]多模型预测函数控制及其在槽式光热发电中的应用[J]. 王湘艳,赵亮,赵大伟,崔晓波,朱凌志,丁佳煜,许昌. 可再生能源. 2017(03)
[2]改进半球形腔式吸热器热性能数值模拟[J]. 王俊杰,田瑞,王亚辉,王召阳. 可再生能源. 2013(05)
[3]抛物碟式太阳能聚光器的聚光特性分析与设计[J]. 王云峰,季杰,何伟,陈海飞. 光学学报. 2012(01)
[4]腔式太阳能吸热器热性能的模拟计算[J]. 方嘉宾,魏进家,董训伟,王跃社. 工程热物理学报. 2009(03)
[5]太阳能热发电技术与系统[J]. 杨敏林,杨晓西,林汝谋,袁建丽. 热能动力工程. 2008(03)
[6]碟式聚光太阳能热发电系统用腔式吸热器热性能分析[J]. 张春平,刘志刚,赵耀华,唐大伟. 上海理工大学学报. 2004(04)
博士论文
[1]太阳能聚光器聚焦光斑能流密度分布的理论与实验研究[D]. 刘颖.哈尔滨工业大学 2008
硕士论文
[1]碟式太阳能热利用系统腔式吸热器光热性能研究及优化[D]. 杜艳秋.内蒙古工业大学 2016
[2]碟式太阳能热发电系统中腔式吸热器光热性能的数值研究及优化[D]. 毛青松.华南理工大学 2012
[3]碟式斯特林太阳能热发电系统的模型构建和优化研究[D]. 何坚.兰州理工大学 2011
本文编号:3219401
本文链接:https://www.wllwen.com/projectlw/xnylw/3219401.html