钒钛磁铁矿流态化气固直接还原基础研究
发布时间:2021-04-10 06:27
随着高品位含钛矿石资源的快速消耗,近年来低品位含钛矿石如钒钛磁铁矿中的钛资源开发利用受到了广泛关注。但在传统高炉-转炉流程中,由于工艺条件限制,只能利用铁钒资源,钛资源无法有效富集提取。直接还原-电炉熔分两步法流程作为新一代非高炉冶炼工艺,被认为是实现钒钛磁铁矿铁钒钛资源综合利用的有效方法。在现有直接还原设备中,相比竖炉、回转窑、转底炉,流态化直接还原具有直接利用粉矿和传热传质效率高的优点,被认为是钒钛磁铁矿的非高炉冶炼最有前景的方法。钒钛磁铁矿由于自身复杂矿相组成和含钛铁氧化物特性,其直接还原过程相比较普通铁精矿也更为复杂,所需还原势高、还原效率低。因此,如何突破含钛铁氧化物的直接还原热力学限制,并提高其直接还原效率,是钒钛磁铁矿两步法流程的一个关键所在。本论文以南非某钒钛磁铁矿为实验对象,系统研究钒钛磁铁矿原矿气基直接还原特性,考察了氧化预处理对还原过程物相结构以及流化特性的影响规律。取得的主要研究结果如下:(1)钒钛磁铁矿气基直接还原过程物相转变规律研究。在750-950°C范围内,钒钛磁铁矿的直接还原过程按顺序可分为三个阶段,包括一般铁氧化物还原(第一阶段),钛铁晶石还原(第二...
【文章来源】:中国科学院大学(中国科学院过程工程研究所)北京市
【文章页数】:137 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
CHAPTER 1 INTRODUCTION
1.1 Titanium mineral usage and resource
1.2 Titanium resource utilization process overview
1.3 Overview of titanomagnetite concentrate utilization technologies
1.3.1 Introduction of the blast furnace smelting process
1.3.2 Two step process of direct reduction-electric arc furnace (DR-EAF)smelting
1.4 Key issue of titanomagnetite direct reduction process
1.4.1 Composition of titanomagnetite and direct reduction characteristics
1.4.2 The defluidization problem during FB reduction
1.5 Research plan
CHAPTER 2 DIRECT REDUCTION BEHAVIORS OFTITANOMAGNETITE CONCENTRATE BY CARBON MONOXIDE
2.1 Introduction
2.2 Experimental
2.2.1 Experimental material
2.2.2 Experimental technique
2.2.3 Sample characterization
2.3 Results and discussion
2.3.1 Reduction of the SA TTM under CO atmosphere
2.3.2 Phase transformation behavior of the of SA TTM reduction
2.3.3 Reaction pathway for the CO reduction of the SA TTM
2.4 Summary of this chapter
CHAPTER 3 EFFECTS OF HIGH-TEMPERATURE PRE-OXIDATIONON THE TITANOMAGNETITE ORE STRUCTURE ANDREDUCTION BEHAVIORS IN FLUIDIZED BED
3.1 Introduction
3.2 Experimental
3.2.1 Experimental material and technique
3.2.2 Sample Characterization
3.3 Results and discussion
3.3.1 High temperature oxidation behavior of SA TTM
3.3.2 Effects of the pre-oxidation on the reduction
3.3.3 Effect of pre-oxidation on SA TTM equilibrium reaction path
3.4 Summary of this chapter
CHAPTER 4 EFFECTS OF LOW-TEMPERATURE PRE-OXIDATIONON THE TITANOMAGNETITE ORE STRUCTURE ANDREDUCTION BEHAVIORS IN FLUIDIZED BED
4.1 Introduction
4.2 Experimental
4.3 Results and discussion
4.3.1 Low temperature oxidation behavior of SA TTM
4.3.2 Effects of the pre-oxidation on the reduction
4.3.3 Effect of low temperature pre-oxidation treatment on SA TTM equilibriumreaction path
4.4 Summary of this chapter
CHAPTER 5 THE EFFECT OF PRE-OXIDATION ON THEFLUIDIZATION BEHAVIOR OF SA TTM
5.1 Introduction
5.2 Experimental
5.3 Results and discussion
5.3.1 Fluidization behavior of raw and pre-oxidized SA TTM
5.3.2 Effect of oxidation conditions
5.4 Summary of this chapter
CHAPTER 6 MAIN CONCLUSION AND OUTLOOK
6.1 Major innovations
6.2 Future plans
Reference
ACKNOWLEDGEMENT
CURRICULUM VITAE (WITH PUBLICATIONS)
【参考文献】:
期刊论文
[1]钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 孙昊延,朱庆山,李洪钟. 过程工程学报. 2018(06)
[2]A novel process for the recovery of iron,titanium,and vanadium from vanadium-bearing titanomagnetite:sodium modification–direct reduction coupled process[J]. Yi-min Zhang,Ling-yun Yi,Li-na Wang,De-sheng Chen,Wei-jing Wang,Ya-hui Liu,Hong-xin Zhao,Tao Qi. International Journal of Minerals Metallurgy and Materials. 2017(05)
[3]电脉冲孕育处理对Zr基块体非晶热稳定性及退火晶化的影响[J]. 孙昊延,王静松,曹立军,薛庆国. 材料热处理学报. 2012(09)
[4]国内外钛白及海绵钛主要原料产业现状及我国发展重点[J]. 李兴华,文书明. 钛工业进展. 2011(03)
[5]Analysis on variety and characteristics of maghemite[J]. SHAW John,BLOEMENDAL Jan,HESSE Paul,ROLPH Tim. Science China(Earth Sciences). 2010(08)
[6]世界钛渣研发现状与发展趋势[J]. 周林,雷霆. 钛工业进展. 2009(01)
[7]攀钢钒钛磁铁矿资源综合利用现状与发展[J]. 邓君,薛逊,刘功国. 材料与冶金学报. 2007(02)
[8]钒钛磁铁矿转底炉直接还原综合利用前景[J]. 洪流,丁跃华,谢洪恩. 金属矿山. 2007(05)
[9]世界钛渣生产技术现状与趋势[J]. 邹建新. 轻金属. 2003(12)
[10]钒钛磁铁矿高炉冶炼的强化[J]. 马家源,孙希文,盛世雄. 钢铁. 2000(01)
本文编号:3129140
【文章来源】:中国科学院大学(中国科学院过程工程研究所)北京市
【文章页数】:137 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
CHAPTER 1 INTRODUCTION
1.1 Titanium mineral usage and resource
1.2 Titanium resource utilization process overview
1.3 Overview of titanomagnetite concentrate utilization technologies
1.3.1 Introduction of the blast furnace smelting process
1.3.2 Two step process of direct reduction-electric arc furnace (DR-EAF)smelting
1.4 Key issue of titanomagnetite direct reduction process
1.4.1 Composition of titanomagnetite and direct reduction characteristics
1.4.2 The defluidization problem during FB reduction
1.5 Research plan
CHAPTER 2 DIRECT REDUCTION BEHAVIORS OFTITANOMAGNETITE CONCENTRATE BY CARBON MONOXIDE
2.1 Introduction
2.2 Experimental
2.2.1 Experimental material
2.2.2 Experimental technique
2.2.3 Sample characterization
2.3 Results and discussion
2.3.1 Reduction of the SA TTM under CO atmosphere
2.3.2 Phase transformation behavior of the of SA TTM reduction
2.3.3 Reaction pathway for the CO reduction of the SA TTM
2.4 Summary of this chapter
CHAPTER 3 EFFECTS OF HIGH-TEMPERATURE PRE-OXIDATIONON THE TITANOMAGNETITE ORE STRUCTURE ANDREDUCTION BEHAVIORS IN FLUIDIZED BED
3.1 Introduction
3.2 Experimental
3.2.1 Experimental material and technique
3.2.2 Sample Characterization
3.3 Results and discussion
3.3.1 High temperature oxidation behavior of SA TTM
3.3.2 Effects of the pre-oxidation on the reduction
3.3.3 Effect of pre-oxidation on SA TTM equilibrium reaction path
3.4 Summary of this chapter
CHAPTER 4 EFFECTS OF LOW-TEMPERATURE PRE-OXIDATIONON THE TITANOMAGNETITE ORE STRUCTURE ANDREDUCTION BEHAVIORS IN FLUIDIZED BED
4.1 Introduction
4.2 Experimental
4.3 Results and discussion
4.3.1 Low temperature oxidation behavior of SA TTM
4.3.2 Effects of the pre-oxidation on the reduction
4.3.3 Effect of low temperature pre-oxidation treatment on SA TTM equilibriumreaction path
4.4 Summary of this chapter
CHAPTER 5 THE EFFECT OF PRE-OXIDATION ON THEFLUIDIZATION BEHAVIOR OF SA TTM
5.1 Introduction
5.2 Experimental
5.3 Results and discussion
5.3.1 Fluidization behavior of raw and pre-oxidized SA TTM
5.3.2 Effect of oxidation conditions
5.4 Summary of this chapter
CHAPTER 6 MAIN CONCLUSION AND OUTLOOK
6.1 Major innovations
6.2 Future plans
Reference
ACKNOWLEDGEMENT
CURRICULUM VITAE (WITH PUBLICATIONS)
【参考文献】:
期刊论文
[1]钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 孙昊延,朱庆山,李洪钟. 过程工程学报. 2018(06)
[2]A novel process for the recovery of iron,titanium,and vanadium from vanadium-bearing titanomagnetite:sodium modification–direct reduction coupled process[J]. Yi-min Zhang,Ling-yun Yi,Li-na Wang,De-sheng Chen,Wei-jing Wang,Ya-hui Liu,Hong-xin Zhao,Tao Qi. International Journal of Minerals Metallurgy and Materials. 2017(05)
[3]电脉冲孕育处理对Zr基块体非晶热稳定性及退火晶化的影响[J]. 孙昊延,王静松,曹立军,薛庆国. 材料热处理学报. 2012(09)
[4]国内外钛白及海绵钛主要原料产业现状及我国发展重点[J]. 李兴华,文书明. 钛工业进展. 2011(03)
[5]Analysis on variety and characteristics of maghemite[J]. SHAW John,BLOEMENDAL Jan,HESSE Paul,ROLPH Tim. Science China(Earth Sciences). 2010(08)
[6]世界钛渣研发现状与发展趋势[J]. 周林,雷霆. 钛工业进展. 2009(01)
[7]攀钢钒钛磁铁矿资源综合利用现状与发展[J]. 邓君,薛逊,刘功国. 材料与冶金学报. 2007(02)
[8]钒钛磁铁矿转底炉直接还原综合利用前景[J]. 洪流,丁跃华,谢洪恩. 金属矿山. 2007(05)
[9]世界钛渣生产技术现状与趋势[J]. 邹建新. 轻金属. 2003(12)
[10]钒钛磁铁矿高炉冶炼的强化[J]. 马家源,孙希文,盛世雄. 钢铁. 2000(01)
本文编号:3129140
本文链接:https://www.wllwen.com/projectlw/yjlw/3129140.html